

Abstract—The large size and the dynamic nature of the Web

highlight the need for continuous support and updating of Web

based information retrieval systems such as search engines. Due

to resource constraints, search engines usually have difficulties in

striking the right balance between time and space limitations. In

this paper, we propose a simple yet effective model for a search

engine. We suggest a hybrid design which brings together the best

features that constitute a search engine. To give an overview, the

whole mechanism of how a search engine works is provided.

Further, the model is discussed in detail. We then demonstrate

how the proposed model, which embodies features like

Fingerprinting, Compressor, Importance number and Refresher

can improve the efficiency of a simple search engine if applied on

a large scale.

Index Terms—Crawler, Web search engine, refresh policy,

search methods, indexing, Distributed information systems.

I. INTRODUCTION

THE World Wide Web has grown from a few thousand

pages in its early days to more than two billion pages at

present. A large number of analyses have been made on the

size of the web. Conclusions are drawn that the web is still

growing at an exponential pace [2]. Moreover, the web is not

structured at all and finding your desired page on the web

without a search engine can be a painful task. That is why;

search engines have grown into by far the most popular way

for navigating the web. In fact, search engines were also

known as some of the brightest stars in the Internet frenzy that

occurred in the late 1990s.

 Engineering a search engine is a challenging task. Search

engines rely on massive collections of web pages that are

acquired with the help of web crawlers, which traverse the web

by following hyperlinks and storing downloaded pages in a

large database that is later indexed for efficient execution of

user queries. Many researchers have looked at web search

technology over the last few years, including crawling

strategies, storage, indexing, and ranking techniques as a

complex issue. The key to a search engine is, that it needs to

be equipped with an intelligent navigation strategy [7], i.e.

enabling it to make decisions regarding the choice of

subsequent actions to be taken (pages to be downloaded etc).

In this paper, we propose an architecture which can be helpful

in improving the efficiency of search engines. Our main goal is

to improve the quality of web search engines and build an

architecture that can search the ever growing web data in a

better way.

The rest of the paper is organized as follows. We begin with

a definition of a basic search engine in section 2, giving an

overview of how does a search engine work and what are its

key components. In Section 3, we investigate the need of an

advanced search engine. Section 4 suggests some possible

solutions for those problems. In Section 5, we the present a

'hybrid' model for search engines- Swift which incorporates the

best features possible model and discuss every module in

detail. Finally, we discuss the scope and future work possible

in this direction in Section 6 and outline our conclusion in

Section 7.

II. WORKING OF A SEARCH ENGINE

Internet search engines are special sites on the Web that are

designed to help people find information stored on other sites.

A search engine basically consists of four parts. Figure 1

shows a basic search engine model [2] :

• Crawlers: They search the Internet -- or select pieces

of the Internet -- based on important words.

• Repository: It stores the complete HTML of every

relevant page crawled by the Crawler.

• Indexer: It creates an index of the pages they find, on

the basis of their linking with other pages.

• Searcher: It allows users to look for words or

combinations of words in the local repository. The

complete working of a search engine is dependent on

the flow of data among the above mentioned

modules.

A. Crawler

A Web crawler (also known as spider) is a program, which

automatically traverses the web by downloading documents

and following links from page to page. Crawlers are mainly

used by web search engines to gather data for populating the

repository. It starts with a few seed pages and then uses the

external links within them to attend to other pages. The

process repeats with the new pages offering more external

links to follow.

We may think that the job of a crawler is over when all the

pages have been fetched to the repository once, but there is

another important task that a crawler has to perform,

refreshing. The Web is not a static collection of pages. It is a

dynamic entity evolving and growing every minute. Hence

there is a continual need for crawlers to help applications stay

current as new pages are added and old ones are deleted,

A Hybrid Model for a Search Engine

Shikha Mehta, Ankush Gulati, and Ankit Kalra

moved or modified.

In technical terms, crawling can be viewed as a graph search

problem [5]. The Web is seen as a large graph with pages at its

nodes and hyperlinks as its edges. A crawler starts at a few of

the nodes (seeds) and then follows the edges to reach other

nodes. The process of fetching a page and extracting the links

within it is analogous to expanding a node in graph search.

B. Local Repository

Everything the spider finds goes into the second part of the

search engine, the repository. The repository stores and

manages a large collection of ‘data objects’ in this case web

page. All the pages that a crawler crawls and finds relevant are

downloaded and stored in the repository. The repository acts

as the local cache for this information retrieval system.

Whenever, a user searches for a keyword, the searcher module

looks into the repository and prints the results.

C. Indexer

An Indexer is a program that “reads” the pages, which are

stored in the repository. Even though, each web database has a

different indexing method (Brin and Page 1998), the indexer

mostly decides what the web site is about and how the website

is linked to the rest of the web. It reads the repository,

decompresses the documents, and parses out all the links in

every web page and stores important information about them

to determine where each link points from and to, and the text

of the link.

Furthermore, the indexer also does the job of ranking pages

on the basis of their importance in the result set. The ranking

module consists of a rank distribution algorithm which assigns

a random rank to a web page and then computes the rank of

other web pages. The algorithms that are commonly used for

the purpose of ranking are HITS, Page Rank algorithm and

many more [14].

D. Searcher

This is the program that sifts through the millions of pages

recorded in the database to find matches to a specific search.

The searcher works on the output files from the indexer. It

accepts user queries, runs them over the index, and returns

computed search results to the issuer. The searcher is run by a

web server and uses the Page Ranks to answer queries.

III.

III. NEED OF AN ADVANCED SEARCH ENGINE

The enormous growth in information that we want to

publish on the web has created the need and space for more

advanced information retrieval systems to help fetch the

information effectively. Many reasons can be cited for the

need of an advanced search engine.

• Complex Structure of the web: The internet has

been aptly named as the Web because of its structure.

The web is not organized and its complicated

structure creates a lot of problems in effective

management of data on the web. The hypertext

documents are linked with each other through

hyperlinks within them. This gives the user, the

ability to choose what he will see next. Interestingly,

there can be various links on different pages leading

to the same document. A simple crawl mechanism

may lead us to a voluminous database with a high

degree of redundant data. Thus the crawler needs to

have a good crawling strategy [10], i.e., a strategy for

deciding whether to download the next page or not,

by selecting only one of the many paths available for

the same page and hence, avoid data redundancy. It

may not seem to be an important issue but when the

size and the structure of the web are taken into

account, this problem can have deadly consequences

on the effectiveness of the search engine.

• Dynamic nature of the web: It is an important factor

for large-scale Internet search engines. We can

broadly classify the issue into three cases :

1. Pages Added: The web is growing in size,

and most studies agree that it grows at an

exponential rate. This poses a serious

challenge of scalability for search engines

that aspire to cover a large part of the web.

Pages are added everyday and it is the

responsibility of the search engine to

continuously grow and update its database

about the latest link structure of the web.

2. Pages Updated: Apart from the newly

created pages, the existing pages are

continuously updated [14]. Newer and more

relevant information is added and the older

ones are removed. Websites like news

portals, etc are updated almost every minute

and if the search engine's database is not

updated with the current information, it is of

no use to the user. Thus, the search engine

must store a fresh copy of the pages stored.

3. Pages Deleted: Finally, the problem of

unavailability of pages also needs to be

addressed. The less relevant pages are

removed from time to time by the servers.

The search engine must keep a check on the

availability of the pages it has stored in its

local database and remove there links if they

are no more hosted.

• Vast Ocean of data (WWW) to be used as the

database to search from: Size of web cannot be

calculated in less than petabytes and crawling the

entire web can be a cumbersome task. According to a

study, interestingly, the highly relevant content is

found very deep in the web. Hence, it can be seen as a

problem where we have the limitation of both space

and time. In the context of space, we need a local

database of size that can store a copy of almost each

and every page crawled by the crawler. Taking the

time restriction into account, we need to have an

efficient algorithm which can search the giant

database fast enough to give the desired results in

ample time.

IV. PROPOSED SOLUTION

On the basis of our study of the problems a basic search

engine faces, we have come up with a solution which

addresses most of the issues discussed in the previous section.

We explored that crawlers consume the maximum amount

of resources [9]: network bandwidth to download pages, CPU

to evaluate and select URLs, and disk storage to store the text

and links of fetched pages as well as other persistent data.

Hence, there is a need to improve the working of the crawler

considerably.

Issues like complex structure of the web can be resolved

by using special techniques such as URL matching and

Content matching [10] where in all the pages downloaded by

the crawler are first inspected for there content and compared

with the copies available in the local database to avoid

redundancy.

Similarly, the large amount of data can be handled

efficiently if it is classified on the basis of some parameters.

For example, we can divide the entire database on the basis of

content and store pages related to one category in one database

and other category in another and so on. We can further reduce

the amount of space required to store the data by applying

some common compression- decompression techniques [9] on

the database.

Also, the time constraint can be handled with good

indexing techniques and we can provide quality search results

using a rank distribution algorithm [14].

Lastly, there is the issue of dynamic nature of the web.

This problem can not be easily sorted out. Some smart and

effective methods are needed if this issue has to be dealt with.

Continuous changes in the web have to be matched with

powerful refreshing techniques [2]. The local database

should be consistently updated with the latest copies of

updated pages.

V. DESIGN OF THE PROPOSED MODEL

In this section we give a detailed presentation of the design

of a 'Hybrid' model. Swift is a distributed and scalable

architecture which is extensible as well. The entire model has

been designed in a way that new modules can be added any

time for further improvements. Figure 2 shows the complete

design of Swift.

The key features which make Swift a ‘Hybrid’ model are

Compressor-Decompressor, Fingerprint matcher, Importance

value calculator, Ranking Algorithm, Focused Crawlers and

Smart Refresher algorithm in a Distributed setup.

In the proposed model, the crawling process starts with a few

URLs provided. It generates a repository of hundreds and

thousands of pages from them and further, refreshes the local

database from time to time. The content matching and

database updation mechanisms follow the crawling operation.

This complete process continues in the background repeatedly.

When the user searches for a keyword, the Searcher and the

Indexer modules use the repository in its current state as the

database to search from. Figure 2 shows the flow of data

among the components of Swift.

A. Features

• Distributed Architecture:

The design proposed is based on a completely distributed

architecture. The distribution of jobs to agents is an

important problem, crucially related to the efficiency of

the system. Therefore, each task must be performed in a

fully distributed fashion, that is, no central coordinator

can exist. Every agent interacts with either some agent or

the Repository for taking the input or giving the processed

output. Even the Refresher and Extractors are further

distributed for applying the Focused Crawling approach.

• Fingerprinting:

Every time a page is downloaded by an Extractor, a 64-bit

key is generated by applying MD5 algorithm [10] on the

contents of the document. We call this key, a fingerprint

of this page. This fingerprint can be used by both the

Refresher and the Content Seen Tester. For each newly

collected document, if we verify its fingerprint against the

fingerprint of the previously collected documents, we can

certainly reduce the data redundancy problem to a large

extent and hence, address the space limitations.

• Compression-Decompression:

We can further reduce the amount of space required to an

astonishing degree by using a few simple data

compression techniques on the documents before storing

them in the repository. During the testing phase of this

module, we could reduce the size of the local repository

by about 60% of the original size. Thus, this feature if

taken into account can cause serious improvements.

• Heterogeneous crawling:

As the size of the Web grows, it become s imperative to

parallelize a crawling process, in order to finish

downloading pages in a reasonable amount of time [13].

This feature suggests a crawler cluster with dedicated

machines for crawling the web heterogeneously on the

basis of the content.

• Smart Refreshing techniques:

Even though there is an established protocol, Robot

Exclusion Protocol [7] that can be used to get information

about the page. very few websites actually implement this

protocol and incorporate it in their pages. We follow the

approach suggested by Risvik and Michelsen [2]. This

approach uses a relatively simple algorithm for adaptively

computing an estimate of the refresh frequency for a given

document. Basically, this algorithm decreases the refresh

interval if the document was changed between two

retrievals and increases it if the document has not changed

[2]. This is used as input to the scheduler, which

prioritizes between the different documents and decides

when to refresh each document. To decide whether the

page has changed since the previous crawl, we apply a

smart technique. On retrieving the document, we calculate

its fingerprint and match it with its existing fingerprint. If

they verify, it suggests that page has not changed and thus,

we discard the new page. But if they do not verify, the old

page is

replaced by the new one and its fingerprints are updated in

the URL database.

• Importance value:

 A small yet effective feature that gives weight age to the

user's choices. Whenever a page is accessed by the user,

its importance value is raised depicting that the page is a

useful one. By default, it is a standard integer value

assigned to every URL which gets incremented by 1 every

time the URL is visited by the User.

• Ranking algorithm:

 Due to the Web’s size and the fact that users typically

only enter one or two keywords, result sets are usually

very large. Hence the ranking module has the task of

sorting the results such that results near the top are the

most likely to be what the user is looking for. In our

model, we incorporate the Page Rank algorithm. The

crawled portion of the Web is modeled as a graph with

nodes and edges. Each node in the graph is a Web page,

and a directed edge from node A to node B represents a

hypertext link in page A that points to page B [14]. Page

Rank is a link analysis algorithm that assigns a numerical

weighting to each node of the graph generated with the

purpose of "measuring" its relative importance.

B. Working

The working of the model can be explained as follows. To

begin with, the Input Queue takes a list of seed URLs as its

input from the URL Database and the Extractors repeatedly

execute the following steps. Remove a URL from the queue,

download the corresponding document, and extract any links

contained in it. With the help of the Content Seen Tester, it is

ensured that no extracted file is encountered before and there

does not exist a copy of the same in the Repository. After the

document has passed the Content Seen Test, its Fingerprint is

saved in the URL Database. The document is then sent to the

Compressor module which compresses the document and

stores it in the Repository.

Alongside, the refresher module works on refreshing the

populated Repository. It takes the already visited URLs from

the URL Database and downloads them. The refresher then

applies the refreshing algorithm with the help of Fingerprinting

mechanism and updates the local Repository with the fresh

copies of existing URLs.

On the other hand, when a user searches for a specific

keyword(s), the Searcher module fires a query to the Keyword

Matcher. The Keyword Matcher requests the Decompressor to

decompress the documents stored in Repository one by one. It

searches for the requested keyword(s) within each page it gets

from the Decompressor and forwards the results to the

Indexer. The Indexer further generates a graph of resulting

documents and calculates a rank for each document. The

Searcher fetches the results from the Indexer and displays the

results in an ascending order of the ranks calculated. Finally,

for all the links that are accessed by the User, an update is sent

by the Searcher to the URL database to increment its

Importance Value.

VI. FUTURE WORK

The size of the web is clearly a big challenge, and future

evolution of web dynamics raises clear needs for even more

intelligent models. One important dimension to be worked

upon is the search quality. Search quality means being able to

intelligently manipulate the query and fetch results that are as

close as possible to the desired output. Features like keyword

lexicon can be incorporated in the existing model.

Another important research direction is to study more

sophisticated text analysis techniques [8]. At the same time,

the “Deep Web” is most likely growing at a rate much higher

than the current “indexable” web. There is no unified and

practical solution to aggregate the deep web on a large scale.

VII. CONCLUSION

We have presented Swift, a fully distributed, scalable,

incremental and extensible model. We believe that Swift

introduces new ideas in intelligent information systems, in

particular the search engines. Swift is an ongoing project, and

our current goal is to successfully implement the proposed

model. We have described the architecture and the operation

of Swift in detail. Also, we have discussed the working of a

search engine and highlighted how problems arise in all

components of a basic search engine model. Swift copes with

several of these problems by its key properties like

Fingerprinting, Importance Value, Compression-

Decompression, Smart Refresher Techniques and Ranking

algorithms in a distributed environment. The overall

architecture that we have described in this paper is quite

simple and does not represent very novel ideas. The system

architecture is relatively simple and hence, easy to grow.

 REFERENCES

[1] Qiang Zhu , “An Algorithm OFC For The Focused Web Crawler” in

Proceedings of the Sixth International Conference , Hong Kong, Aug

.2007

[2] Knut Magne Risvik , Rolf Michelsen, “Search Engines and Web

Dynamics”.

[3] Qingzhao , Tan,Prasenjit Mitra , C.Lee Giles, “Designing Clustering-

Based Web Crawling Policies for Search Engine Crawlers”

[4] Altigran S. da Silva , Eveline A. Veloso , Paulo B. Golgher “CoBWeb –

A Crawler for the Brazilian Web”.

[5] Gautam Pant , Padmini Srinivasan , Filippo Menczer “ Crawling the

Web”

[6] Vladislav Shkapenyuk , Torsten Suel “ Design and Implementation of a

High-Performance Distributed Web Crawler ”.

[7] Younes Hafri , Chabane Djeraba “ Dominos : A New Web Crawler’s

Design ”.

[8] Brian Pinkerton “ WebCrawler : Finding What People Want ”.

[9] Monica Peshave “ How Search Engines Work And a Web Crawler

Application ”.

[10] Allan Heydon < Marc Najork “ Mercator : A scalable , Extensible Web

Crawler" June 1999.

[11] Junghoo Cho , Hector Garcia-Molina “ Parallel Crawlers ”.

[12] Carlos Castillo , Mauricio Marin , Andrea Rodriguez “ Scheduling

Algorithms for Web Crawling ”.

[13] Paolo Boldi , Bruno , Massimo Santini , Sebastiano Vigna “ UbiCrawler

: A scalable Fully Distributed Web Crawler ”.

[14] Arvind Arasu , Junghoo Cho , Hector Garcia-Molina , Andreas Paepcke

, Sriram Raghavan “Searching the Web”.

[15] Behnak Yaltaghian , Mark Chignell “ Re-ranking Search Results using

Network Analysis - A case study with Google”.

[16] Behnak Yaltaghian , Mark Chignell “ Effect of Different Network
Analysis Strategies on Search Engine Re-Ranking ”.

[17] Michelangelo Diligenti , Marco Gori , Marco Maggini “ Web Page

Scoring Systems for Horizontal and Vertical Search”.

[18] Thomas Mandl “ Implementation and Evaluation of a Quality Based

Search Engine ”.

