
SWIFT – A Hybrid Search Engine 
 
 
 

 
                       ENROL NO:     040303  
            NAME OF THE STUDENT:   ANKUSH GULATI 
            NAME OF THE SUPERVISOR:    MRS. SHIKHA MEHTA 
 
 

 
 

 
 
 
 

MAY 2008 
 
 
 
 
 

Submitted in partial fulfillment of the Degree of  
Bachelor of Technology 

 
 
 
 
 
 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 
JAYPEE INSTITUTE OF INFORMATION AND TECHNOLOGY 

UNIVERSITY, NOIDA 
 
 



 II

TABLE OF CONTENTS 
Chapter No. Topics   Page No. 
 Declaration   III 
 Certificate from the Supervisor   IV 
 Acknowledgement    V 
 Summary   VI 
 List of Figures   VII 
 List of Acronyms   VIII 
 
Chapter-1 Introduction   1 to 6 

1.1 General 
1.2 Problem Statement 

 
Chapter-2 Review / Background Material    7 to 17 
 2.1 Background Material 
 2.2 Literature Survey 
 2.3 Review  
 
Chapter-3  Contributional work Description and Results 18 to 34 
 3.1 Methodology  
 3.2.1 Modeling 
 3.2.2 Analysis 
 3.2.3 Work Plan 
 3.3.1 Design 
 3.3.2 Implementation 
 3.3.3 Testing 
 3.3.4 Results 
 
Chapter 4 Findings & Conclusion   35 to 40 
 4.1 Findings 
 4.2 Conclusion 
 4.3 Future Work 
 
References    41 to 42 
 
Appendices    43 to 77 
 
Appendix A Glossary of Keywords    I-III 
Appendix B  Catalogue of Decisions   IV-VII 
Appendix C Test Reports   VIII-XXIV 
Appendix D Tools   XXV-XXVIII 
Appendix E Gantt Chart   XXIX-XXXI 
Appendix F Annotated Bibliography   XXXII-XXXV 
 
Publications    XXXVI 
Resume     



 III

 

 

Declaration by the Candidate 

 

I hereby certify that the work, which is being presented in the project entitled “SWIFT – A 

Hybrid Search Engine”, in partial fulfillment of the requirements for the award of degree of 

Bachelor of Technology in Computer Science and Engineering, submitted in the Department 

of Computer Science and Engineering, Jaypee Institute of Information Technology, (Deemed 

University), Noida is an authentic record of my work carried out during the period from July, 

2007 to May 2008 under the supervision and guidance of Mrs. Shikha Mehta . 

   I have not submitted the matter embodied in this project for the award of any other 

degree or diploma. 

 

 

 

 

Signature of the student 

Ankush Gulati 

 

 

Date: 

 



 IV

Certificate 
 

This is to certify that the work titled “SWIFT – A Hybrid Search Engine” submitted by 

Ankush Gulati in partial fulfillment for the award of degree of B.Tech of Jaypee Institute of 

Information Technology University, Noida has been carried out under my supervision. This 

work has not been submitted partially or wholly to any other University or Institute for the 

award of this or any other degree or diploma.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Date: __/__/____              Sign: _______________ 

 

Signature of Supervisor   

Mrs. Shikha Mehta 

Sr. Lecturer 

 

 



 V

Acknowledgement 

 
I hereby grab the opportunity to express my gratitude towards the Computer Science 

Department, JIIT Noida, for providing me an excellent environment & facilities in order to 

prepare and present the report of my project. 

 

I sincerely thank Mrs. Shikha Mehta, Department Of Computer Science and Engineering, 

who initially put forth the idea of creating this tool. This project is result of her initiative and 

constant motivation. I received great inspiration and constant encouragement from all my 

revered teachers and am highly acknowledged. They all gave me valuable help. 

 

Last but not the least I thank all the concern one’s who directly or indirectly helped me in the 

continuous progress of the project. 

 

 

 

 

 

 

 

 

 

 

 

Ankush Gulati, 

Department of Computer Science, 

Jaypee Institute of Information Technology, Noida. 

 

 

 

 



 VI

Summary 
The large size and the dynamic nature of the Web highlight the need for continuous support 

and updating of Web based information retrieval systems such as search engines. Due to 

resource constraints, search engines usually have difficulties in striking the right balance 

between time and space limitations. In this project, we propose a simple yet effective model 

for a search engine. We suggest a hybrid design which brings together the best features that 

constitute a search engine. To give an overview, the whole mechanism of how a search 

engine works is provided. Further, the model is discussed in detail. We then demonstrate how 

the proposed model, which embodies features like Fingerprinting, Compressor, Importance 

number and Refresher can improve the efficiency of a simple search engine if applied on a 

large scale. 

The World Wide Web has grown from a few thousand pages in its early days to more 

than two billion pages at present. Moreover, the web is not structured at all and finding your 

desired page on the web without a search engine can be a painful task. That is why; search 

engines have grown into by far the most popular way for navigating the web.  

 Engineering a search engine is a challenging task. Search engines rely on massive 

collections of web pages that are acquired with the help of web crawlers, which traverse the 

web by following hyperlinks and storing downloaded pages in a large database that is later 

indexed for efficient execution of user queries. Many researchers have looked at web search 

technology over the last few years, including crawling strategies, storage, indexing, and 

ranking techniques as a complex issue. The key to a search engine is, that it needs to be 

equipped with an intelligent navigation strategy, i.e. enabling it to make decisions regarding 

the choice of subsequent actions to be taken (pages to be downloaded etc). In this project, we 

propose an architecture which can be helpful in improving the efficiency of search engines. 

Our main goal is to improve the quality of web search engines and build an architecture that 

can search the ever growing web data in a better way. 

  

__________________      __________________ 

Signature of Student     Signature of Supervisor 

Ankush Gulati     Mrs. Shikha Mehta 

Date     Date 



 VII

LIST OF FIGURES 
 
 

 

1. Basic Search Engine 

2. Flowchart of the process followed by the author 

3. Flowchart of the unified process 

4. Sequence Diagram 

5. Activity Diagram 

6. Design of Hybrid Model 

7. Snapshot of initial_links table 

8. Snapshot of Crawler 

9. Snapshot of links table 

10. Snapshot of Parser 

11. Snapshot of Indexer 

12. Snapshot of linkstore table 

13. Snapshot of Refresher 

14. Snapshot of User Interface-1 

15. Snapshot of User Interface-2 

16. Gantt Chart Schedule 

17. Gantt Chart-1 

18. Gantt Chart-2 

 

 

 

 

 

 

 

 

 



 VIII

LIST OF ACRONYMS 
 
 
 
WWW World Wide Web 

HTTP Hyper Text Transfer Protocol 

ASP Active Server Page 

URL Uniform Resource Locator 

MD5 Message-Digest algorithm 5 

SHA Secure Hash Algorithm 

NOF Number of Forward Links 

URI Uniform Resource Identifier 

HTML Hyper Text Markup Language 

IMP Importance Value 

DNS Domain Name System  

W3C World Wide Web Consortium 

 



 
“SWIFT” – A Hybrid Search Engine 1 

 

 

 

 

 

 

 

 

 
Chapter 1 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 2 

1.1. General 
SEARCH ENGINES 

 

The World Wide Web has grown from a few thousand pages in its early days to more 

than two billion pages at present. Moreover, the web is not structured at all and finding your 

desired page on the web without a search engine can be a painful task. That is why; search 

engines have grown into by far the most popular way for navigating the web. The large size 

and the dynamic nature of the Web highlight the need for continuous support and updating 

of Web based information retrieval systems such as search engines. A search engine is an 

information retrieval system designed to help find information stored on a computer system, 

such as on the World Wide Web, inside a corporate or proprietary network, or in a personal 

computer.  

 Search Engines have played a fundamental role in making the Web easier to use for 

millions of people. Its invention and subsequent evolution helped fuel the Web’s growth by 

creating a new way of navigating hypertext: searching. Before search engines, a user who 

wished to locate information on the Web either had to know the precise address of the 

documents he sought or had to navigate patiently from link to link in hopes of finding his 

destination. According to a study at Sun Microsystems, the number of servers on the WWW 

is doubling every 53 days. If this to be believed then there is an urgent need to develop new 

applications that realize the power of the Web, but also in the technology needed to scale 

applications to accommodate the resulting large data sets and heavy loads. I have always 

been interested in the working mechanism of search engines. So I chose this field as it has a 

lot of scope in future too.  

Engineering a search engine is a challenging task. Search engines rely on massive 

collections of web pages that are acquired with the help of web crawlers, which traverse the 

web by following hyperlinks and storing downloaded pages in a large database that is later 

indexed for efficient execution of user queries. Many researchers have looked at web search 

technology over the last few years, including crawling strategies, storage, indexing, and 

ranking techniques as a complex issue. The key to a search engine is, that it needs to be 

equipped with an intelligent navigation strategy, i.e. enabling it to make decisions regarding 

the choice of subsequent actions to be taken (pages to be downloaded etc). 

 

 



 
“SWIFT” – A Hybrid Search Engine 3 

How do Search Engines work ? 
 

There are differences in the ways various search engines work, but they all perform three 

basic tasks:  

– They search the Internet -- or select pieces of the Internet -- based on important 

words. [CRAWLER] 

– They keep an index of the words they find, and where they find them. [INDEXER] 

– They allow users to look for words or combinations of words found in that index. 

[SEARCHER] 

 

 
Fig 1:Basic Design of a search engine 

 

Crawler 

A web crawler (also known as a web spider or web robot) is a program or automated script 

which browses the internet seeking for web pages to process. Many applications mostly 

search engines, crawl websites everyday in order to find up-to-date data.  

 

Indexer 

Search engine Indexing entails how data is collected, parsed, and stored to facilitate fast and 

accurate information retrieval.  The indexer module extracts all the words from each page 

and records the URL where each word occurred. 

Here the ranking module has the task of sorting the results such that results near top are the 

most likely results for the user. The ranking module consists of rank distribution algorithm 

which assigns a random rank to a web page and then computes the rank of other web pages. 

 

 

 

 

 
 

CRAWLER INDEXER SEARCHER 

 

www 

End Users 



 
“SWIFT” – A Hybrid Search Engine 4 

Project as an enquiry 

 

The process of looking at the project as an enquiry whose answer would be the result of our 

project led to the following result: 

 

How can we enhance the user’s decision making ability by efficiently handling the large 

volumes of information available?                                           

 

The other minor questions that arise due to the enquiry question: 

 How can a few URLs completely span the web? 

 

 What do you mean by distributed systems? 

 

 How would the performance be increased by applying distributed approach to the 

design? 

 

 How to make searching user-friendly and user-specific? 

 

 What features can be incorporated from various existing models and why? 

 

 What is Fingerprinting? 

 

 How can we handle redundancy issues? 

 

The process of looking at the project like an enquiry helped in understanding the basic 

requirements of the project. It also helped in checking what were our goals and how close it 

is to the goal had set for ourselves. 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 5 

1.2. Problem Statement 
 

1) Problem Statement: 

On the basis of recent studies made on the structure and dynamics of the web itself, it has 

been analyzed that the web is still growing at a high pace, and the dynamics of the web is 

shifting. More and more dynamic and real-time information is made available on the web. 

Our aim is to design a search engine that meets the challenges of web growth and update 

dynamics 

 

2) Steps taken to define the problem:  

• First of all, extensive literature survey was done to have an idea of the topic – Search 

Engines and how do they work. 

• Most importantly, the applications and implications of the topic were analyzed. For 

example, constraints like. 

• After that, recent work done in this field was analyzed and areas that are yet to be 

worked upon were explored. 

• Finally, our own limitations to develop the project were figured out. For example, we 

cannot work on large scale systems because of the lack of system requirements. 

 

3)Project Area & justification of project area / problem statement 

                                

TC 8 : Information Systems 

WG 8.3 Decision Support Systems & WG8.5 Information Systems in Public Administration 

The aim of the working committee of IFIP standards(WG 8.3 & 8.5) i.e. to promote and 

encourage interactions among professionals from practice and research and advancement of 

investigation of concepts, methods, techniques, tools, and issues related to information 

systems in organizations is well justified by the project domain thus chosen by us. Search 

Engines have played a fundamental role in making the Web easier to use for millions of 

people. Its invention and subsequent evolution helped fuel the Web’s growth by creating a 

new way of navigating hypertext: searching. Before search engines, a user who wished to 



 
“SWIFT” – A Hybrid Search Engine 6 

locate information on the Web either had to know the precise address of the documents he 

sought or had to navigate patiently from link to link in hopes of finding his destination. As 

the Web grew to encompass millions of sites, with many different purposes, such navigation 

became impractical and arguably impossible. According to a study at Sun Microsystems, the 

number of servers on the WWW is doubling every 53 days. If this to be believed then there 

is an urgent need to develop new applications that realize the power of the Web, but also in 

the technology needed to scale applications to accommodate the resulting large data sets and 

heavy loads. I have always been interested in the working mechanism of search engines. So I 

chose this field as it has a lot of scope in future too.  

The research work in my project is being done in the field of improving the efficiency of 

search engines, specifically dynamic search engines. Thus after going through many 

research papers and lectures I understood the need and scope of effective utilization of 

information technologies in organizational context. 

 

 

4) Main Problems faced to define the problem: 

 

• There is not a rich body of literature describing practical large-scale crawling and 

searching systems, and in particular, very few address issues relating to the dynamic 

web. 

• Different search engines follow different techniques and hence, use different metrics 

to evaluate their performance. Thus, it was difficult to compare and contrast 

performance results two different search engine results.  

• Despite the importance of large-scale search engines on the web, very little academic 

research has been conducted on them which made it difficult to have a exact idea of 

how things work and can be further improved. 

• Almost all the papers and publications have a limitation. While one used a simplified 

strategy, the other could not theoretically prove its practical observations. 

• With the astronomical growth in the size of WWW, despite the fact that our systems 

are efficient for the current scenarios, we continuously need to invent new techniques 

and algorithms to be able to cope with the increasing demands. 



 
“SWIFT” – A Hybrid Search Engine 7 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Background Material 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 8 

2.1 Recent Research Work 

 
We studied a few research works currently going on in the field of search engines out of 

which a few were quite useful to us in designing our model.  

The FAST Search Engine service is running live at www.alltheweb.com and major portals 

worldwide with more than 30 million queries a day, about 700 million full-text documents, a 

crawl base of 1.8 billion documents, updated every 11 days, at a rate of 400 

documents/second. The FAST Search Engine architecture copes with several of these 

problems by its key properties. The system architecture is relatively simple, and this makes 

it manageable even when it grows. In a real-life system with service level requirements, 

simplicity is crucial to operating the system and to being able to develop it further. Being 

heterogeneous and containing intelligence with regards to scheduling and query processing 

makes this a real-life example of dealing with web dynamics issues today. 

 

Another system, a high availability system of crawling called Dominos has been created in 

the framework of experimentation for French Web legal deposit carried out at the Institute 

National de l'Audiovisuel (INA). Dominos is a dynamic system, whereby the processes 

making up its kernel are mobile. 90% of this system was developed using Erlang 

programming language, which accounts for its highly flexible deployment, maintainability 

and enhanced fault tolerance. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 9 

2.2 Study of a Theoretically Sound Book 
 

The main book that we referred to and studied was Decision Support Systems and 

Intelligent Systems by Efraim Turban and Jay E.Aronson. This book presents the 

fundamentals of the techniques with which management support systems are developed. 

 

Generally, the book covers five main subjects: Knowledge Management, Decision Support 

Systems, Fundamentals of Intelligent Systems, Advanced Intelligent Systems, and 

Implementation. 

 

Decision Support Systems and Intelligent Agents particularly discuss about Intelligent 

Software Agents. They define 4 levels of Intelligence. According to those intelligence levels, 

Search Engine is classified as having Level 1 of intelligence (Level 0 being the lowest). 

 

Search Engines as Intelligent Agents 

Most of the agents are single task agents i.e. they perform brute search on internet. Here 

comes the need of multi-task search agents. Then it defines Search Engines as Intelligent 

Agents. With these agents at work, the competent user’s decision making ability is enhanced 

with the information. 

 

The book is intended to people like us who actually wish to apply cryptographic methods to 

their programs, and so the theoretical discussions and mostly at introductory level -- 

sufficient to make us understand how a search engine acts as an intelligent agent and 

intelligent algorithm makes search engine work effectively. 

 

The above book was really helpful in making us understand the fundamental and important 

concepts of intelligent information systems. These books broadened our horizons and had a 

deep impact on our project. 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 10 

2.3 Literature Survey 

 
1. Knut Magne Risvik,Rolf Michelsen, “Search Engines and Web Dynamics” 

Overview: 

This paper presents several dimensions of web dynamics in the context of large-

scale Internet search engines. It shows how the problems arise in all components of 

a reference search engine model. Furthermore, the FAST Search Engine 

architecture as a case study for showing some possible solutions for web dynamics 

and search engines is used. Both growth and update dynamics clearly represent big 

challenges for search engines. Future evolution of web dynamics raises clear needs 

for even more intelligent scheduling to aggregate web content as well as technology 

for push-based aggregation. 

 

2. Monica Peshave, “How Search Engines Work and A Web Crawler Application” 

Overview: 

The paper describes in detail the basic tasks a search engine performs. An overview 

of how the whole system of a search engine works is provided. This paper also lists 

proposed functionalities as well as features not supported by the web crawler 

application. This paper explains the anatomy of typical search engine and 

demonstrates the working of a web crawler developed in Java. It discusses the 

functionalities of all the components involved in finding information on the Web. 

 

3. Altigran S.da Silva, Eveline A. Veloso, Paulo B. Golgher,   Berthier Ribeiro-Neto, 

Alberto H. F. Laender, Nivio Ziviani, “CoBWeb” 

Overview: 

This paper describes CoBWeb, an automatic document collector, whose 

architecture is distributed and highly scalable. CoBWeb aims at collecting large 

amounts of documents per time period, while observing operational and ethical 

limits in the crawling process. These results indicate that by running several 

collecting processes and by properly distributing it is possible to obtain collection 

rates comparable to that of the crawlers of commercial search engines. Another 

contribution can be the good results obtained by the use of the parasite cache 

approach to update the set of collected documents. 



 
“SWIFT” – A Hybrid Search Engine 11 

 

4. Allan Heydon, Marc Najork, “Mercator: A Scalable, Extensible Web Crawler” 

Overview: 

This paper describes Mercator, a scalable, extensible web crawler written entirely in 

Java. It enumerates the major components of any scalable web crawler, comment 

on alternatives and tradeoffs in their design, and describes the particular 

components used in Mercator. It also describes Mercator's support for extensibility 

and customizability. calable web crawlers are an important component of many 

web services, but they have not been very well documented in the literature. 

Building a scalable crawler is a non-trivial endeavor because the data manipulated 

by the crawler is too big to fit entirely in memory, so there are performance issues 

relating to how to balance the use of disk and memory.  

 

5. Arvind Arasu, “Searching the Web” 

Overview: 

This paper offers an overview of current web search engine designs. It shows 

search engines components covering crawling, page storing and indexing. 

Furthermore, it emphasizes on the use of link analysis for boosting search  

performance. The link structure of the web contains a lot of useful information that 

can be harnessed to support keyword searching.Page Ranking is a global ranking 

scheme that can be used to rank search results.HITS sets a set of authority pages 

and a set of hub pages. 

 

6. Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale Hypertextual Web 

Search Engine” 

Overview: 

The paper describes a prototype of a large-scale search engine which makes heavy 

use of the structure present in hypertext.This paper addresses this question of how 

to build a practical large-scale system which can exploit the additional information 

present in hypertext.This paper explains simple improvements to efficiency 

including query caching, smart disk allocation, and subindices. It indicates that 

PageRank can be personalized by increasing the weight of a user's home page or 

bookmarks. 

 



 
“SWIFT” – A Hybrid Search Engine 12 

7. Behnak Yaltaghian, Mark H. Chignell, “Effect of Different Network Analysis 

Strategies on Search Engine Re-Ranking” 

  Overview: 

The research described in this paper examined two different approaches to building 

the co-citation network that the authors have used in re-ranking the set of results 

returned by a search engine. These results indicate search based on a network-

analytic relevance prediction model significantly improves the precision of  results as 

compared to the Google search engine. 

 

8. Behnak Yaltaghian, Mark H. Chignell,  “Re-ranking Search Results using Network 

Analysis” 

Overview: 

In the present paper, the author reviews methods of structured search for information 

on the World Wide Web. The author proposes new methods based on co-citation and 

network analysis. The authors have tried to see how well search engine rankings can 

be improved using a combination of co-citation and network analysis under ideal 

conditions. Using Google as base for study, they have shown that almost all of the 

network analysis measures can significantly improve on the Google selection 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 13 

2.3 Literature Integration 
 

On the basis of the literature survey done, the following inferences have been drawn 

on which our project can be based. To start with, the paper “How Search Engines 

Work and a Web Crawler Application” gives an overview on how the whole system 

of a search engine works. The paper describes in detail the basic tasks a search 

engine performs. Secondly, the paper “Search Engines and Web Dynamics” gives an 

insight into the web dynamics in the context of large-scale Internet search engines. It 

further suggests various approaches to improve the efficiency of the search engines 

like the refreshing algorithm, the heterogeneous architecture. Further, “CoBWeb – A 

Crawler for the Brazilian Web” presents a crawler with distributed architecture. This 

paper presents a unique method for resolving the same page problem. Furthermore, 

“Mercator: A Scalable, Extensible Web Crawler”, another crawler design, 

enumerates the main components required in any scalable crawler, and discusses 

design alternatives for those components.  

 

Given the current size and high growth rate of the web, a comprehensive web 

directory may contain thousands of pages in a particular category. In such a case, it 

might be impossible for a user to look through all the relevant pages within a 

particular topic in order to identify the ones that best represents the required topic. It 

would be more time efficient for a user to view the web pages in order of their 

importance. 

 

A way to solve this problem is to use a ranking function. While these rankings can 

work well in some cases, they do not capture the fast changing structure of the web. 

Google uses a algorithm known as Page Ranking algorithm. This algorithm is based 

on rank distribution model. The intuition of page rank is that a page on the web is 

important if there are lots of other important pages pointing to it. But this algorithm 

strongly depends on the presumption that the web is strongly connected. But in 

reality, the web is far from strongly connected. So these ranking modules need to be 

modified. 

 



 
“SWIFT” – A Hybrid Search Engine 14 

A modified page ranking has been proposed which removes the dependability of this 

algorithm on the strong connectivity of the web. This modified algorithm works on 

page-ranking as the base. After the rank has been assigned to all the web pages, it 

reassigns the rank by decaying the links of the graph. This method of decaying is 

referred as decay factor which is introduced on the rank calculated by original page 

ranking algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 15 

2.3 Review 

2.3.1 Review of important Research Papers 
 

1. Knut Magne Risvik,Rolf Michelsen, “Search Engines and Web Dynamics” 

           Inquiry questions:  

• How can we address the issue of web dynamics in the context of large scale 

internet search engines? 

• How can the heterogeneous architectures prove helpful? 

 

Process: 

• Web Dynamics and its problems are introduced. 

• FAST Search Engine architecture is used as a case study for showing possible 

solutions. 

• Discussion on heterogeneous architecture. 

• Finally, it discusses future of the web. 

 

2. Monica Peshave, “How Search Engines Work and A Web Crawler Application” 

Inquiry questions:  

• How does the whole system of a search engine work? 

• What functionalities and features are not supported by the crawler 

application? 

Process: 

• First problem was stated 

• Extensive background was given 

• Presented the anatomy of a large scale Hypertext Transfer Protocol (HTTP) 

based Web search. 

• The GUI of the application developed helps the user to identify various 

actions performed. 

• Additionally, a web crawler is developed and implemented in Java. 

 

3. Allan Heydon, Marc Najork, “Mercator: A Scalable, Extensible Web Crawler” 

Inquiry questions:  



 
“SWIFT” – A Hybrid Search Engine 16 

• What is a scalable and extensible web crawler? 

• How to balance the use of disk and memory? 

 

Process: 

• Problem was stated 

• Related work was surveyed. 

• The main components of Mercator were discussed. 

• The alternatives and tradeoffs in the design were compared. 

• Performance measurements and web statistics were reported. 

 

4. Altigran S.da Silva, Eveline A. Veloso, Paulo B. Golgher,   Berthier Ribeiro-Neto, 

Alberto H. F. Laender, Nivio Ziviani, “CoBWeb” 

 

Inquiry questions:  

• What is an automatic document collector? 

• How can we increase our collection rates while observing operational and ethical 

limits in the crawling process? 

Process: 

• Explains the fact that using distributed architecture can help us achieve the 

crawling rates of commercial crawlers. 

• Describes the application of parasite cache approach on a set of collected 

documents. 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 17 

i. Flowchart of Process Followed In Research Papers by authors 
 

 

 
 

Fig 2 

Research the Topic and citing examples and 
references of the same. 

Identify the existing approaches, models, 
methods. 

Start 

Testing the research proposal using sample data 
and numerical examples. 

Brainstorming (discussing the problems and 
limitations) and Concept Mapping 

Analyze and interpret the results. 

Impact and usefulness of research on the area 
chosen. 

Review and discuss and find scope for future 
work. 

Stop 



 
“SWIFT” – A Hybrid Search Engine 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Contributional Work Descriptions & Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 19 

3.1 Methodology 

3.1.1 Flowchart Of Integrated Process Followed 

 
Fig 3 

Chose an Area / Domain and identify and 
introduce the topic of interest. 

Research the Topic (by studying through 
journals, magazines, books, databases, websites 
etc.) and citing examples and references of the 

same.

Identify the existing approaches, models, 
methods. 

Brainstorming (discussing the problems and 
limitations) and Concept Mapping 

Designing and developing the research 
proposal 

Testing the research proposal using sample data 
and numerical examples. 

Analyze and interpret the results. 

Impact and usefulness of research on the area 
chosen. 

Writing the research proposal. 

Review and discuss and find scope for future 
k

Start 

Stop 



 
“SWIFT” – A Hybrid Search Engine 20 

3.1.2 How is our Search Engine “Hybrid”? 
 

On the basis of the study of various designs studied, we have decided to integrate the 

following features from all the designs in our search engine to make it an efficient search 

engine : 

 

FAST Crawler 

Features included in our search engine: 

•  Freshness algorithm 

•  Heterogeneous Crawlers 

•  Heterogeneous Updation mechanism 

 

COBWeb 

Features included in our search engine: 

• Inclusion of “Importance Number” 

• Content based signatures for “Page seen” problem 

 

DOMINOS 

Features included in our search engine: 

• Distributed Architecture 

 

Mercator 

Features included in our search engine: 

•  Content seen test using fingerprinting 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 21 

3.2 Modeling, Analysis and Work plan 

 

3.2.1 Modelling : 
Sequence Diagram 

Fig 4 
Activity Diagram 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig 5 

 

User 
Interface 

Searcher Repository Indexer Scheduler Crawler 

1.Enterkeyword 

2. Search in the 
local database 

3. Fetch results 
4. Extract 
matching data 

6. Schedules the 
crawling of pages 

7. Crawl the w3 

 

Parser 

5. Parse the 
document 

Fetch pages 
from web User

Apply Rank 
Distribution 

Model

Refresher 
Module

Fetched 
Pages

Form a 
graph

Store in the 
repository

Crawler 
Techniques

Check for 
updates on 
web page

Yes

queries

Result

Scheduler

Fetch pages 
from web User

Apply Rank 
Distribution 

Model

Refresher 
Module

Fetched 
Pages

Form a 
graph

Store in the 
repository

Crawler 
Techniques

Check for 
updates on 
web page

Check for 
updates on 
web page

Yes

queries

Result

Scheduler

 



 
“SWIFT” – A Hybrid Search Engine 22 

 

3.2.2 Analysis:  
On the basis of the literature survey, it was analyzed that there are different ways to improve 

the performance of web search engines. 

 

There are three main directions: 

1. Improving user interface on query input. 

2. Using Filtering towards the query results. 

3. Solving algorithms in web page spying and collecting, indexing, and output. 

 

And, method 3 is the fundamental solution for any direct search engines to deal with the 

problems of unequal accessing, out-of-date information, and low metadata using, as well as 

information coverage. 

 

The field of search engines is infinitely vast; there is a never ending scope for improvement. 

Hence, we will follow a simple approach that tries to address all the key issues with optimal 

and effective solutions to attain the desired results. 

The overall tool will be developed in an incremental fashion with all the functionalities 

divided into separate modules which will be developed as per the work plan. All the 

functionalities will be developed following the approach mentioned in the report that i.e. by 

using the different strategies for different modules on the basis of literature survey. 

 

It was also seen that there is no solution for Crawler traps where in the crawler is trapped in 

an infinite loop accessing the same site. It is done by the site owners to increase there search 

statistics and spammer sites. No automatic technique to handle this problem was found. It 

can be human handled only. 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 23 

 

3.2.3 Work Plan: 

 

 

S.No 

 

Phase 

1. Literature Survey 

2. Analysis of different algorithm designs. 

3. Designing 

4. Implementation :Crawler 

5. Implementation :HTML Parser 

7. Implementation :User Interface 

8. Implementation :Searcher 

9. Implementation :Indexer 

10.. Implementation :Page Refresher 

11.. Implementation :Distributed System 

11. Integration : Merge all modules together 

12. Testing & Debugging 

13. Final Report 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 24 

 

3.3      Design, Implementation, Testing 
 

3.3.1 Design:     
Application Design 

 

 
Fig 6: Design of the Hyrbrid model 

 

3.3.2 Implementation 
 

A. Data Flow among modules 

The Initial_links table provides a list of seed URLs as the initial input and the Crawler 

module repeatedly executes the following steps. Pick a URL from the table, download the 

corresponding document, and extract any links contained in it. With the help of the Parser 

module, it is ensured that no extracted file is encountered before and there does not exist a 

copy of the same in the Repository by applying Content Seen Testing. After the document 

has passed the Content Seen Test, its Fingerprint is saved in the Links table along with the 

number of its forward links. The document is then sent to the Compressor module which 

compresses the document and stores it in the Repository.  

Alongside, the Refresher module works on refreshing the populated Repository. It takes the 

already visited URLs from the Links table and downloads them. The Refresher then applies 



 
“SWIFT” – A Hybrid Search Engine 25 

the refreshing algorithm with the help of Fingerprinting mechanism and updates the local 

Repository with the fresh copies of existing URLs. In the background, another module 

namely, the Indexer generates a graph of resulting documents and calculates a rank for each 

document using the Page Ranking algorithm. 

On the other hand, when a user searches for a specific keyword(s), the Searcher module 

fires a query to the Keyword Matcher. The Keyword Matcher requests the Decompressor to 

decompress the documents stored in Repository one by one. It searches for the requested 

keyword(s) within each page it gets from the Decompressor. The Sorter further sorts the 

resulting documents on the basis of their rank as well as the Importance Number. The 

Searcher fetches the results from the Sorter and displays the results in hyperlinked format. 

Finally, for all the links that are accessed by the User, an update is sent by the Searcher to 

the URL database to increment its Importance Number.  
 

B.  Platform  

Our application runs on Microsoft Visual Studio.NET 2005 with Oracle 10g as 

backend.  

 

C. Other Qualities: 

       a.  Usability 

The ease with which our software can be used by people for searching the web 

without any computer background. 

 

        b.  Scalability 

Execution time should remain constant with increase in number of users 

(processors).  
 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 26 

 

3.3.3 Testing 
 

A. Efficiency: 

We have to test that the execution time in the best case. It should be less than 

execution time in the worst case. 

 

      INDEXER : 

Best Case 

      When the most populated link exists at the top of the database. 

 

       Worst case:  

When the most populated link exists at the bottom of the database. 

 

 Average case: 

      When the most populated link exists at an intermediate node. 

 

       REFRESHER : 

Best Case 

     When the page has not been changed/updated. 

 

      Worst case:  

The page no longer exists as it is not hosted on the web now.  

      

Average case: 

When pages are changed/updated, their new key sequence has to be generated and 

they have to be saved in the repository. 

 

      CRAWLER: 

Best Case 

When initial seeds given are densely populated, i.e. they contain more number of 

links. 

 

Worst case:  



 
“SWIFT” – A Hybrid Search Engine 27 

When initial seeds given sparsely populated, i.e. they contain less number of links 

 

Average case: 

None 

 

B.  Accuracy:  

1. Incorrect type of links fetched (different file formats, URL rewritten links). 

2. Incorrect graph being generated by the indexer. 

3. Incorrect information being fetched by the parser. 

4. Incorrect page rank. 

 

C. Limitations: 

1. Will not work on any other platform other than Windows. 

2. Will interpret only a few file formats not all. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 28 

D.   Test Plan 

 S.No. 

Type Of 

Testing Things to be Tested 

  

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit/Module 

Testing 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Crawler  

Test whether seed URLs are valid or not. 

Test whether correct links are being extracted. 

Test that the extracted links are correctly stored in the database. 

Test the code for varying load conditions (vary the number of 

seed URLs).  

 

Parser 

Test whether the web page is perfectly downloaded and its body 

is correctly extracted from it. 

Test the calculated values of forward_links for each link. 

Test the fingerprint (MD5 Key generation) and storage for each 

webpage. 

Test the compression method by matching the data with its 

decompressed form. 

 

Refresher 

Testing the correct access of fingerprint from the database.  

Testing the perfect matching of previous and fresh fingerprints. 

 

Indexer 

Test the correct formation of graph from the unique links stored 

in the graph. 

Test the perfect calculation of rank for each node. 

Testing of the Page Rank algorithm. 

 

Searcher 

Test the time efficiency of the searcher by using different 

keywords (common and rare). 

Test the layout consistency for all cases (for all sizes of output).  



 
“SWIFT” – A Hybrid Search Engine 29 

2 

 

 

Integration 

Testing  

 

 

Test whether correct URLs are passed to the Parser module. 

Test whether the Parser correctly updates the database with the 

new fields. 

3 

 

 

 

 

 

System 

Testing 

 

 

 

 

  

Testing of Oracle Database connection. 

Testing of connected systems executing different modules. 

Testing the effective working of heterogeneous crawling 

distributed on various systems. 

Testing the effective working of heterogeneous refreshing 

distributed on various systems. 

Testing data consistency while multiple machines access the 

same database. 

Testing the performance under varying load conditions 

(distributed and serial computing). 

4 

  

  

  

  

User 

Acceptance 

Testing 

  

 

 

Test the search result relevance. 

Test the output layout. 

Test the working of hyperlinked results. 

Testing the performance by increasing the load (accessing the 

search engine from multiple machines). 
 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 30 

3.3.4 Results 
Functionality of various modules 

1. CRAWLER 

• Extract (Findlinks.cs): Extracts pages from the web using the seed links 

stored in initial_links table. 

• Store (Start.cs): Stores the new URL in Links table. 

 

Fig 7 

 
Fig 8 



 
“SWIFT” – A Hybrid Search Engine 31 

2. PARSER 

• Content Seen Testing (Fingerprint.cs): Matches the contents of the 

downloaded page with the existing pages to reduce data redundancy. 

• Compressor-Decompressor (Compression.Cs): Compresses & decompresses 

the non-redundant pages on specific points. 

 

Fig 9 

 
Fig 10 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 32 

3. SEARCHER  

• User Interface: Fires a query to look for the searched keyword in all the files 

stored in the local repository. 

 
Fig 11 

 

 
Fig 12 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 33 

 

4. INDEXER 

• Compute.cs: Sorts the results found on the basis of a rank distribution 

algorithm. 

 
      Fig 13 

 

Fig 14 

 



 
“SWIFT” – A Hybrid Search Engine 34 

 

5. REFRESHER  

• Content Matching (Refresh.cs): Updates the local database with fresh copies 

of web pages from time to time. 

 

 
Fig 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

FINDINGS AND CONCLUSIONS 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 36 

4.1 Findings 

 
EVALUATION MATRIX 

Evaluation Parameters Our Project FAST MERCATOR 

 

Crawler Type 

 

Heterogeneous Non Heterogeneous Non Heterogeneous 

 

Check pointing 

 

Yes No Yes 

 

Database  

 

Compressed Not Compressed Not Compressed 

 

Data Redundancy 

 

Nil Nil To an extent 

Refreshing policy Non redundant Redundant Non redundant 

Crawler Traps No No Yes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
“SWIFT” – A Hybrid Search Engine 37 

Function Points 
 

Information Domain Value Count Simple Average Complex Points 

External Inputs(EIs) 2 3 4 6 6 

External Outputs(Eos) 3 4 5 7 15 

External Inquiries(EQs) 1 3 4 6 3 

Internal Logical Files(ILFs) 1 7 10 15 7 

External Interface 
Files(EIFs) 

2 5 7 10 10 

 
                                                                                     Count total                                  41 
 

FP = Count Total *[0.65 + (0.01* 46)] 
        
       = 41* [0.65 + (0.01* 46)] 

 
            = 45.51 

 
 

Design Structure Quality Index 
 

S1= total number of modules defined in the program architecture 

S2= number of modules whose correct function depends on the source of data input or        

        that produce data to be used elsewhere. 

S3= number of modules whose correct function depends on prior processing 

S4= number of database items 

S5= number of unique database items 

S6= number of database segments 

S7= number of modules with a single entry and exit 

 

We have, 

S1=5                                 S5=more than 3000  

S2=3                                 S6=around 1200 

S3=4                                 S7=1 

S4= more than 70000 

D1=5 



 
“SWIFT” – A Hybrid Search Engine 38 

D2 = 1- (S2/S1) = ( 1 - ( 3 / 5 ) ) = 0.4  

D3 = 1- (S3/S1) = ( 1 - ( 4 / 5 ) ) = 0.2 

D4 = 1-(S5/S4) = ( 1 - ( 3000 / 70000 ) ) = 0.95 

D5 = 1-(S6/S4) = ( 1 - ( 1200 / 70000 ) ) = 0.98 

D6 = 1-(S7/S1) = ( 1- ( 1 / 5 ) )    = 0.8 

 

DSQI = sigma (Wi Di) 

=0.167(5+0.4+0.2+0.95+0.98+0.8) 

=0.167*8.33 

 =1.3911 

 

Halsted Program value 
 
Halsted’s theory of “software science” proposed for computer software. The measures are: 
 n1 = the number of distinct operator that appear in the program = 30 
n2= the number of distinct operands that appear in the program= 59 
N1= the total number of operator occurrence = 56 
N2= the total number of operand occurrences= 102 
 
Halsted length 
 
N = n1log2n1 + n2log2n2 
Program value 
 
V = N log2 (n1+n2) 
    
   = 4154.09 
 
 
Volume ratio  
 
L = 2/ n1 * n2/ N2 
 
   = 0.0385 
 
 
 
 
 
 
 
 
 
 

 



 
“SWIFT” – A Hybrid Search Engine 39 

Halsted effort 
 

PL = 1 / [ (n1/2) * (N2/n2)] 
      = 0.01960 
 
e= V / PL  
  = 4154.09 / 0.01960 
  = 211943.367 
 

COCOMO - II effort 
 
COCOMO II application composition model uses object points – an indirect software 
measure that is computed using counts of number of 

1. Screens( at the user interface) 
2. Reports 
3. Components 

Likely to be required to build the application. 
 
OBJECT TYPE Count Simple 

 
Medium difficult 

Screen 1 1 2 3 
Report 1 2 5 8 
Components 5   10 
 
Total object point = 1*3+1*5+5*10=58 
 
 
NOP = (object point) * [(100 - % reuse)/100] 
 
        =    58 *  [(100 – 75 )/ 100 ] 
 
        =    58 * 1 /4 
     
        =    14.5 
 
For calculation of productivity rate, using the following table 
 
Highlighting the values of our system 
 
Developer’s 
Experience  

Very low Low Nominal High Very high 

Environment 
maturity/ 
capability 

Very low Low Nominal High Very high 

PROD 4 7 13 25 50 

 
So, PROD = 25 
 
Estimated effort = nop / prod = 14.5/ 25 = 0.58 



 
“SWIFT” – A Hybrid Search Engine 40 

4.2 Conclusion 

 
We have designed a fully distributed, scalable, incremental and extensible model for a 

search engine.  The application has been successfully implemented on a distributed 

architecture. We have proposed a hybrid model for a search engine as a part of our research 

work. It copes with several problems faced by existing models with the help of its key 

properties like fingerprinting, importance value, compression- decompression, smart 

refresher technique and ranking algorithm all of which have been implemented in a 

distributed environment. 

 

4.3 Future Scope 

 
We can modify the design and add another dimension to the search engine, the lexical 

chains; this will allow more efficient searching. The lexical chains contain the list of 

keywords found in the file along with their count. So, lexical chain analysis provides easy 

and fast searching. We can optimize the output by using smarter searching on the large 

database. We can transform the keyword searcher into a broader searcher which can search 

other file formats as well. Other promising direction is to apply other sources of information, 

like query logs and click streams, for improving Web searching. We can study more 

sophisticated text analysis techniques (such as Latent Semantic Indexing) and explore 

enhancements for them in a hyperlinked setting. Another area of further research is 

implementing inverted files for every web page, which helps in assigning weights to specific 

HTML tags and thereby improving the web search. 

 

 
 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine 42 

i. Qiang Zhu , “An Algorithm OFC For  The Focused Web Crawler”  In Proceedings of 

the Sixth International Conference , Hong Kong, Aug .2007 

ii. Knut Magne Risvik , Rolf Michelsen, “Search Engines and Web Dynamics”, 

Computer Networks, 39:289–302, 2002. 

iii. Qingzhao , Tan,Prasenjit Mitra , C.Lee Giles, “Designing Clustering-Based Web 

Crawling Policies for Search Engine Crawlers”, Proceedings of the sixteenth ACM 

conference on Conference on information and knowledge management,2007 

iv. Altigran S. da Silva , Eveline A. Veloso , Paulo B. Golgher  “CoBWeb – A Crawler 

for the Brazilian Web”, String Processing and Information Retrieval Symposium, 

1999 . 

v. Vladislav Shkapenyuk , Torsten Suel “ Design and Implementation of a High-

Performance Distributed Web  Crawler ”, Proceedings 18th International 

Conference,2002. 

vi. Younes Hafri , Chabane Djeraba “ Dominos : A New Web Crawler’s Design 

”,IWAW 2004. 

vii. Allan Heydon “ Marc Najork “ Mercator : A scalable , Extensible Web Crawler" A. 

Heydon and M. Najork, “Mercator: A scalable, extensible web crawler,” World Wide 

Web, vol. 2, no. 4, pp. 219–229, 1999. 

viii. Arvind Arasu , Junghoo Cho , Hector Garcia-Molina , Andreas Paepcke , Sriram 

Raghavan “Searching the Web”. ACM Transactions on Internet Technology, 2001. 

ix. Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale Hypertextual Web 

Search Engine”, Computer Networks and ISDN Systems, Volume 30 ,  Issue 1-7 

 (April 1998) Pages: 107 - 117  ISSN:0169-7552  1998. 

x. Michelangelo Diligenti , Marco Gori , Marco Maggini  “ Web Page Scoring Systems 

for Horizontal and Vertical Search”,ACM ,2005. 

 
 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine I 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A 

GLOSSARY 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
“SWIFT” – A Hybrid Search Engine II 

A 

Architecture-- Information architecture (IA) is the art and science of expressing a model or 

concept for information used in library systems, web development, user interactions, 

database development, programming, technical writing, enterprise architecture, critical 

system software design and other activities that require explicit details of complex systems. 

 

C        

Crawler-- A web crawler  is a program or automated script which browses the World Wide 

Web in a methodical, automated manner.    

 

D 

Database-- A computer database is a structured collection of records or data that is stored in 

a computer system. A database relies upon software to organize the storage of data. 

Distributed Architecture-- facilitates designing for flexibility because distributed systems 

can often be easily reconfigured by adding extra servers or clients and clients and servers 

can be developed by competing organizations, giving the customer a choice 

 

F 

Fingerprinting 

 

E 

Extractor 

 

H 

Hybrid 

 

I 

Indexer 

Information Retrieval-- Information retrieval (IR) is the science of searching for information 

in documents, searching for documents themselves, searching for metadata which describe 

documents, or searching within databases, whether relational stand-alone databases or 

hypertextually-networked databases such as the World Wide Web. 

 

M 



 
“SWIFT” – A Hybrid Search Engine III 

MD5 algorithm 

Meta Tags-- Meta elements are HTML or XHTML elements used to provide structured 

metadata about a web page. Such elements must be placed as tags in the head section of an 

HTML or XHTML document. Meta elements can be used to specify page description, 

keywords and any other metadata not provided through the other head elements and 

attributes. 

 

R 

Refresher-- 

Refresh Policy 

 

S 

Searcher 

Spider-- A spider(also known as web crawler)  is a program or automated script which 

browses the World Wide Web in a methodical, automated manner. 

Seeds 

 

T 

Title 

 

U 

URI-- A URI, or Uniform Resource Identifier, is the physical location of a file on the 

system. 

URL-- A URL, or Uniform Resource Locator, is the location of a file on the Web. 

 

W 

World Wide Web-- The World Wide Web (commonly shortened to the Web) is a system of 

interlinked hypertext documents accessed via the Internet. 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Appendix B 

DECISION CATALOGUE 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine V 

In the process of the development of our project we had the following decisions to make: 

 

S.No. Decision taken Reason 

1. Choosing the project 

area/domain i.e.  E-commerce 

and management of Information 

Systems 

This particular domain was chosen because it was 

our area of interest. Moreover, there is always a 

scope of improvement in the ever growing web and 

we thought we would be able to contribute to this 

domain by designing and developing our own 

architecture. 

2. Choosing the subject in which 

we would design an application-

Web based intelligent 

information retrieval systems 

A large number of analyses have been made on the 

structure and dynamics of the web itself. 

Conclusions are drawn that the web is still growing 

at a high pace, and the dynamics of the web is 

shifting. More and more dynamic and real-time 

information is made available on the web. The 

dynamics of the web creates a set of tough 

challenges for retrieval of information and hence, 

makes the field interesting. 

3. Narrowing down to a specific 

problem/area in Information 

Retrieval systems i.e. Search 

engines 

The web is growing in size at an exponential rate. 

This poses a serious challenge of scalability for 

search engines that aspire to cover a large part of 

the web. Thus, we decided to take up the task of 

developing a smart model for a search engine. 

4. Deciding on our problem 

statement: Developing a hybrid 

model for a search engine which 

improves the efficiency of web 

searching. 

After doing the literature survey, we could 

assimilate that there are various methods that can 

improve given systems. We decided to incorporate 

some of them into our design and develop a hybrid 

model from it. 

5. Selection of specific techniques 

from existing models-

Fingerprinting , Page-Rank , 

Refresher 

Various research models use different techniques to 

handle data redundancy issues. We found 

Fingerprinting to be an effective way of preventing 

redundancy completely. 

6. Selection of specific techniques This feature is not available in any of the models 



 
“SWIFT” – A Hybrid Search Engine VI 

from existing models- 

Compressor - Decompressor  

we studied but we found it efficient as it could 

solve the problem of space complexity. 

7. Selection of specific techniques 

from existing models- Refresher 

We selected a simple yet powerful algorithm from 

one of the research works we studied. It was 

important to select a good algorithm because of the 

importance of refresher module in a search engine. 

8. Selection of specific techniques 

from existing models- Page-

Rank  

We opted for Page Rank as it is a link based 

algorithm and is thus more precise as compared to 

HITS which is content based. 

9. Division of the project into 

modules 

This was done to make our work more organized 

and efficient. We followed a step by step process to 

implement the design. 

10. Deciding on the search horizon- 

whether to work on global 

internet or the local intranet 

Even though, it would have been much easier 

searching on a limited set of data i.e. intranet but it 

could not have answered our primary question of 

intelligent information retrieval from a dynamic 

system. 

11. Deciding on indexing algorithm-  

Page-Ranking algorithm  

We chose page-Ranking algorithm to index our 

web pages because it is a link based algorithm 

which rates the web pages on the basis of its 

popularity content. 

12. Deciding on the database- 

Oracle 

Oracle is the choice of industry all over the world. 

Moreover, it is very user friendly as well. 

13. Deciding on the platform- .NET We chose .NET because it provides many libraries 

and API’s for web related tools. It is relatively easy 

to use and working on it gave us an exposure to a 

new platform. 

14. Deciding on initial seeds. From various research papers , we concluded that 

Initial seeds are chosen on the basis of search 

domain , more the no of outward flowing links 

from a website as a whole (not webpage) more it 

will aid the crawler in its search 

15. Distributing the application on a This decision was made because we discovered our 



 
“SWIFT” – A Hybrid Search Engine VII 

distributed system limitation with system performance. Such huge 

amount of data and such complex applications were 

not running efficiently on our system. So, 

distributing clearly helped address this problem. 



 
“SWIFT” – A Hybrid Search Engine VIII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C 

TEST REPORT 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
“SWIFT” – A Hybrid Search Engine IX 

TEST CASES 

Test Case 1: 

Date:  24th Jan 2008                                 

System/Module: Crawler                  Environment:C#.NET/Oracle 10g 

Function: Returns the hyperlinks connected to a given webpage. 

Pass/Fail: Pass 

 

Entrance Criteria for This Test:  

Correct initial seeds at the start of crawler. 

 

Data required to execute the Test: 

•   Initial Seeds 

•   Depth 

  

Conditions to Test: 

•   HTML page exists at the given URL.. 

  

Steps to Perform: 

• Pass the Initial link to the function. 

• Search for hyperlinks on the given web page. 

• Save those links in database. 

 

Expected Results: 

• The function should return the links hyperlinked to the given web page.. 

 

Actual Results: 

The index values in the arraylist pos1 were same as those that were observed while making 

the trees manually.  

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine X 

Test Case 2: 

Date:  28h Feb 2008                                 

System/Module: HTML Parser                  Environment:C#.NET / Oracle 10g 

Function: Returns the title, no. of forward links, meta tags, bit sequence of a web page.                 

Pass/Fail: Pass 

 

Entrance Criteria for This Test:  

HTML page exists at the given url.  

 

Data required to execute the Test: 

•   URL 

 

 Conditions to Test: 

•   Whether the extracted links are legal or not. 

    

 Steps to Perform: 

• Call the function using the object of main class. 

• Pass the URL of a web page as input. 

 

 Expected Results: 

• The function to store the no. of forward links, title, meta tags, bit sequence in the 

LINKS table of the database. 

 

Actual Results: 

The function stores the no. of forward links, title, meta tags, bit sequence in the LINKS table 

of the database. 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XI 

 Test Case 3: 

Date:  20h March 2008                                 Environment:C#.NET/Oracle 10g 

System/Module: Searcher                    

Function: Returns the links matching to the user query       Pass/Fail: Pass 

 

Entrance Criteria for This Test:  

Succesful execution of Parser module.. 

 

Data required to execute the Test: 

•   Search query 

 

 Conditions to Test: 

•   .Data Reader reading the link should not be null.  

•   Value of sequence length should be an integral value.  

    

 Steps to Perform: 

• Take the input keyword from the user. 

• Decompress the data and search the keyword in the decompressed data.. 

 

 Expected Results: 

• The links matching the user query are shown to the user. 

• The links are shown in the order of their ranking and uswer relevance. 

 

Actual Results: 

The expected values were obtained. 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XII 

Test Case 4: 

Date:  20h April 2008                                                  Environment:C#.NET/Oracle 10g 

System/Module: Indexer 

Function: Makes a graph of all the web pages and calculates the rank of all the web pages 

using rank-distribution model.                     Pass/Fail: Fail 

 

Entrance Criteria for This Test:  

All the links have been stored in the database. 

 

Data required to execute the Test: 

•   All the links from all the web pages. 

 

Conditions to Test: 

•   Links in the LINKSTORE table. 

•    ArrayList of input values should not be empty.  

•   Graph should not be empty. 

    

Steps to Perform: 

• Create a graph of all the links. 

• Evaluate the forward and the backward links of all the web pages. 

• Calculate the rank on the basis of forward and backward links. 

 

Expected Results: 

• Ranks of all web pages using the rank-distribution model. 

 

Actual Results:  

The function did not compute the rank of all the pages. 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XIII 

Test Case 5: 

Date:  20h April 2008                                                  Environment:C#.NET/Oracle 10g 

System/Module: Refresher 

Function: Checks for any updations on the web and if any updations found , it replaces the 

existing page with the updated page.  .                     Pass/Fail: Fail 

 

Entrance Criteria for This Test:  

Parser should have computed the key for all the web pages. 

 

Data required to execute the Test: 

•   LINKS table. 

 

Conditions to Test: 

•   Parser module should have computed the MD5 key for all the web pages. 

• The web page still exists on internet. 

    

Steps to Perform: 

• Compute the key for the web page. 

• Match with the existing key if it does not matches , downloads the page and   

updates it in the repository. 

 

Expected Results: 

• Pages should be refreshed if they contain any updations. 

 

 

Actual Results:  

Pages were being refreshed but were not being downloaded and updated in the database. 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XIV 

USER ACCEPTANCE TESTING 

 

User Feedback 
The final application was provided to the common users (students) and there feedback was 

taken on how they found the application. About 35-40 users used the search engine and 

found the results relevant enough. They were asked to fill a feedback form out of which 

some are attached with the report as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XV 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XVI 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XVII 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XVIII 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XIX 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XX 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XXI 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XXII 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XXIII 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XXIV 

USER ACCEPTANCE TESTING 
 

SWIFT : Hybrid Search Engine 

 

Feedback Form 
 

 

Name : 

 

Designation/ Enrollment No : 

 

Date : 

Performance Evaluation Table 
(Tick only one of the following) 

 

 

Parameter 

 

Poor 

 

Average 

 

Good 

 

Excellent 

 

Speed 

    

 

Relevance of Output 

    

 

No. of links generated 

    

 

Layout/ Design 

    

 

User friendliness 

    

 

 

COMMENTS (if any): 

 

 



 
“SWIFT” – A Hybrid Search Engine XXV 

 

 

 

 

 

 

 

 

 

 

Appendix D 
Tools 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XXVI 

 
 

1. Microsoft Visual Studio .NET Framework 2.0 

 

The Microsoft .NET Framework is a component of the Microsoft Windows operating 

system. It provides a large body of pre-coded solutions to common program requirements, 

and manages the execution of programs written specifically for the framework. The .NET 

Framework is a key Microsoft offering, and is intended to be used by most new applications 

created for the Windows platform. 

 

The pre-coded solutions form the framework's class library and cover a large range of 

programming needs in areas including the user interface, data access, cryptography, numeric 

algorithms, and network communications. The functions of the class library are used by 

programmers who combine them with their own code to produce applications. 

 

Programs written for the .NET framework execute in a software environment that manages 

the program's runtime requirements. This runtime environment, which is also a part of the 

.NET framework, is known as the Common Language Runtime (CLR). The CLR provides 

the appearance of an application virtual machine, so that programmers need not consider the 

capabilities of the specific CPU that will execute the program. The CLR also provides other 

important services such as security guarantees, memory management, and exception 

handling. 

 

The class library and the CLR together comprise the .NET framework. The framework is 

intended to make it easier to develop computer applications and to reduce the vulnerability 

of applications and computers to security threats.  

 

1.1 Important features of .NET Framework  

 

1.  Interoperability - Because so many COM libraries have already been created, the 

.NET Framework provides methods for allowing interoperability between new 

code and existing libraries.  

1. Common Runtime Engine - Programming languages on the .NET Framework 

compile into an intermediate language known as the Common Intermediate 



 
“SWIFT” – A Hybrid Search Engine XXVII 

Language, or CIL; Microsoft's implementation of CIL is known as Microsoft 

Intermediate Language, or MSIL. In Microsoft's implementation, this intermediate 

language is not interpreted, but rather compiled in a manner known as just-in-time 

compilation (JIT) into native code. The combination of these concepts is called the 

Common Language Infrastructure (CLI), a specification; Microsoft's 

implementation of the CLI is known as the Common Language Runtime (CLR).  

2. Language Independence - The .NET Framework introduces a Common Type 

System, or CTS. The CTS specification defines all possible data types and 

programming constructs supported by the CLR and how they may or may not 

interact with each other. Because of this feature, the .NET Framework supports 

development in multiple programming languages. This is discussed in more detail 

in the .NET languages section below.  

3. Base Class Library - The Base Class Library (BCL), sometimes referred to as the 

Framework Class Library (FCL), is a library of types available to all languages 

using the .NET Framework. The BCL provides classes which encapsulate a 

number of common functions such as file reading and writing, graphic rendering, 

database interaction, XML document manipulation, and so forth.  

4. Simplified Deployment - Installation and deployment of Windows applications 

has been the bane of many developers' existence. Registry settings, file distribution 

and DLL hell have been nearly completely eliminated by new deployment 

mechanisms in the .NET Framework.  

5. Security - .NET allows for code to be run with different trust levels without the use 

of a separate sandbox.  

 

The design of the .NET framework is such that it supports platform independence. That 

is, a program written to use the framework should run without change on any platform 

for which the framework is implemented. At present, Microsoft has implemented the full 

framework only on the Windows operating system. Microsoft and others have 

implemented portions of the framework on non-Windows platforms, but to date those 

implementations are not widely used. 

 

 



 
“SWIFT” – A Hybrid Search Engine XXVIII 

 
1. Oracle 10g 

An Oracle database system comprises at least one instance of the application, along with 

data storage. An instance comprises a set of operating-system processes and memory-

structures that interact with the storage. Typical processes include PMON (the process 

monitor) and SMON (the system monitor). 

The Oracle RDBMS stores data logically in the form of tablespaces and physically in the 

form of data files. Tablespaces can contain various types of memory segments; for example, 

Data Segments, Index Segments etc. Segments in turn comprise one or more extents. Extents 

comprise groups of contiguous data blocks. Data blocks form the basic units of data storage. 

At the physical level, data-files comprise one or more data blocks, where the block size can 

vary between data-files 

 

Oracle database management keeps track of its computer data storage with the help of 

information stored in the SYSTEM tablespace. The SYSTEM tablespace contains the data 

dictionary — and often (by default) indexes and clusters. (A data dictionary consists of a 

special collection of tables that contains information about all user-objects in the database). 

Since version 8i, the Oracle RDBMS also supports "locally managed" tablespaces which can 

store space management information in bitmaps in their own headers rather than in the 

SYSTEM tablespace (as happens with the default "dictionary-managed" tablespaces). 

 

 
 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XXIX 

 

 

 

 

 

 

 

 

 

 

Appendix E 

Gantt Chart 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XXX 

 

 
Fig 16:Gantt chart Schedule 

 

 



 
“SWIFT” – A Hybrid Search Engine XXXI 

 
Fig 17:Gantt Chart  

(JULY’07-DEC’07) 

 

 
Fig 18:Gantt Chart  

(JAN’08-MAY’08) 

 



 
“SWIFT” – A Hybrid Search Engine XXXII 

 

 

 

 

 

 

 

 

 

 

Appendix F 

Annotated Bibliography 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XXXIII 

S.No Title Overview Conclusion 

1. Dominos: A New Web 

Crawler’s Design 

Youn`es Hafri, 

Chabane Djeraba 

  

• In the present paper, the author 

describes the design and 

implementation of a realtime 

distributed system of Web 

crawling running on a cluster of 

machines. The system crawls 

several thousands of pages every 

second, includes a high-

performance fault manager, is 

platform independent and is able 

to adapt transparently to a wide 

range of configurations The 

paper also provide details of the 

system architecture and describe 

the technical choices for very 

high performance crawling. 

• Dominos is a dynamic 

system, whereby the 

processes making up its 

kernel are mobile. 90% 

of this system was 

developed using Erlang 

programming language, 

which accounts for its 

highly flexible 

deployment, 

maintainability and 

enhanced fault 

tolerance. 

• Despite having 

different objectives, we 

have been able to 

compare it with other 

documented Web 

crawling systems 

2. UbiCrawler: A 

Scalable Fully 

Distributed Web 

Crawler 

Paolo Boldi Bruno, 

Codenotti,Massimo 

Santini,Sebastiano 

Vigna 

• The main features of UbiCrawler 

are platform independence, linear 

scalability, graceful degradation 

in the presence of faults, a very 

effective assignment function 

(based on consistent hashing) for 

partitioning the domain to crawl, 

and more in general the complete 

decentralization of every task. 

• UbiCrawler introduces 

new ideas in parallel 

crawling, in particular 

the use of consistent 

hashing as a mean to 

completely decentralize 

the coordination logic, 

graceful degradation in 

the presence of faults, 

and linear scalability.  

• The development of 

UbiCrawler highlighted 

also some weaknesses 



 
“SWIFT” – A Hybrid Search Engine XXXIV 

of the Java API, which 

we have been able to 

overcome by using, 

when necessary, better 

algorithms. 

3. Scheduling Algorithms 

for Web Crawling 

Carlos Castillo, 

Mauricio Marin, 

Andrea Rodriguez, 

Ricardo Baeza-Yates 

  

This article presents a comparative study 

of strategies for Web crawling. It shows 

that a combination of breadth- first 

ordering with the largest sites first is a 

practical alternative since it is fast, 

simple to implement, and able to retrieve 

the best ranked pages at a rate that is 

closer to the optimal than other 

alternatives. 

For long-term scheduling, the 

results show that a really 

simple crawling strategy is 

good enough for efficiently 

retrieving a large portion of 

the Chilean Web. As the idea 

is to try to keep as many Web 

sites active as possible, this 

strategy prioritizes Web sites 

based on the number of pages 

available from them, such 

that is avoids exhausting Web 

sites too early. 

4. WebCrawler: Finding 

What People Want. 

Brian Pinkerton 

• This dissertation describes 

WebCrawler’s scientific 

contributions: a method for 

choosing a subset of the Web to 

index; an approach to creating a 

search service that is easy to use; 

a new way to rank search results 

that can generate highly effective 

results for both naive and expert 

searchers; and an architecture for 

the service that has effectively 

handled a three-order-of-

magnitude increase in load. 

• This dissertation also describes 

how WebCrawler evolved to 

        The future of search 

engines is bright. As the Web 

continues to expand and 

increasing numbers of users 

begin to use it, the role of 

search tools will become even 

more important. At the same 

time, the search engine’s job 

will become more difficult, 

resulting in many 

opportunities for research and 

development. These 

challenges can be broken up 

into four main areas: user 

experience, algorithms for 



 
“SWIFT” – A Hybrid Search Engine XXXV 

accommodate the extraordinary 

growth of the Web. 

high-volume information 

retrieval, searching more than 

the Web, and high-volume 

service architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
“SWIFT” – A Hybrid Search Engine XXXVI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Publication 

(Accepted at “The International Conference for Artificial 
Intelligence‘ 08”, Las Vegas, USA) 

 
 



  

Abstract—The large size and the dynamic nature of the Web 

highlight the need for continuous support and updating of Web 

based information retrieval systems such as search engines. Due 

to resource constraints, search engines usually have difficulties in 

striking the right balance between time and space limitations. In 

this paper, we propose a simple yet effective model for a search 

engine. We suggest a hybrid design which brings together the best 

features that constitute a search engine. To give an overview, the 

whole mechanism of how a search engine works is provided. 

Further, the model is discussed in detail. We then demonstrate 

how the proposed model, which embodies features like 

Fingerprinting, Compressor, Importance number and Refresher 

can improve the efficiency of a simple search engine if applied on 

a large scale. 

 

 

Index Terms—Crawler, Web search engine, refresh policy, 

search methods, indexing, Distributed information systems. 

 

I. INTRODUCTION 

THE World Wide Web has grown from a few thousand 

pages in its early days to more than two billion pages at 

present. A large number of analyses have been made on the 

size of the web. Conclusions are drawn that the web is still 

growing at an exponential pace [2]. Moreover, the web is not 

structured at all and finding your desired page on the web 

without a search engine can be a painful task. That is why; 

search engines have grown into by far the most popular way 

for navigating the web. In fact, search engines were also 

known as some of the brightest stars in the Internet frenzy that 

occurred in the late 1990s.  

 Engineering a search engine is a challenging task. Search 

engines rely on massive collections of web pages that are 

acquired with the help of web crawlers, which traverse the web 

by following hyperlinks and storing downloaded pages in a 

large database that is later indexed for efficient execution of 

user queries. Many researchers have looked at web search 

technology over the last few years, including crawling 

strategies, storage, indexing, and ranking techniques as a 

complex issue. The key to a search engine is, that it needs to 

be equipped with an intelligent navigation strategy [7], i.e. 

enabling it to make decisions regarding the choice of 

subsequent actions to be taken (pages to be downloaded etc).  

In this paper, we propose an architecture which can be helpful 

in improving the efficiency of search engines. Our main goal is 

to improve the quality of web search engines and build an 

architecture that can search the ever growing web data in a 

better way.  

The rest of the paper is organized as follows. We begin with 

a definition of a basic search engine in section 2, giving an 

overview of how does a search engine work and what are its 

key components. In Section 3, we investigate the need of an 

advanced search engine. Section 4 suggests some possible 

solutions for those problems. In Section 5, we the present a 

'hybrid' model for search engines- Swift which incorporates the 

best features possible model and discuss every module in 

detail. Finally, we discuss the scope and future work possible 

in this direction in Section 6 and outline our conclusion in 

Section 7. 

 

II. WORKING OF A SEARCH ENGINE  

 

Internet search engines are special sites on the Web that are 

designed to help people find information stored on other sites.  

A search engine basically consists of four parts. Figure 1 

shows a basic search engine model [2] : 

• Crawlers: They search the Internet -- or select pieces 

of the Internet -- based on important words. 

• Repository: It stores the complete HTML of every 

relevant page crawled by the Crawler.  

• Indexer: It creates an index of the pages they find, on 

the basis of their linking with other pages.  

• Searcher: It allows users to look for words or 

combinations of words in the local repository. The 

complete working of a search engine is dependent on 

the flow of data among the above mentioned 

modules.  

A. Crawler 

A Web crawler (also known as spider) is a program, which 

automatically traverses the web by downloading documents 

and following links from page to page. Crawlers are mainly 

used by web search engines to gather data for populating the 

repository.  It starts with a few seed pages and then uses the 

external links within them to attend to other pages. The 

process repeats with the new pages offering more external 

links to follow. 

We may think that the job of a crawler is over when all the 

pages have been fetched to the repository once, but there is 

another important task that a crawler has to perform, 

refreshing. The Web is not a static collection of pages. It is a 

dynamic entity evolving and growing every minute. Hence 

there is a continual need for crawlers to help applications stay 

current as new pages are added and old ones are deleted, 

A Hybrid Model for a Search Engine 

Shikha Mehta, Ankush Gulati, and Ankit Kalra  



moved or modified. 

In technical terms, crawling can be viewed as a graph search 

problem [5]. The Web is seen as a large graph with pages at its 

nodes and hyperlinks as its edges. A crawler starts at a few of 

the nodes (seeds) and then follows the edges to reach other 

nodes. The process of fetching a page and extracting the links 

within it is analogous to expanding a node in graph search. 

B. Local Repository 

Everything the spider finds goes into the second part of the 

search engine, the repository. The repository stores and 

manages a large collection of ‘data objects’ in this case web 

page. All the pages that a crawler crawls and finds relevant are 

downloaded and stored in the repository. The repository acts 

as the local cache for this information retrieval system. 

Whenever, a user searches for a keyword, the searcher module 

looks into the repository and prints the results. 

C. Indexer 

An Indexer is a program that “reads” the pages, which are 

stored in the repository. Even though, each web database has a 

different indexing method (Brin and Page 1998), the indexer 

mostly decides what the web site is about and how the website 

is linked to the rest of the web. It reads the repository, 

decompresses the documents, and parses out all the links in 

every web page and stores important information about them 

to determine where each link points from and to, and the text 

of the link.  

Furthermore, the indexer also does the job of ranking pages 

on the basis of their importance in the result set. The ranking 

module consists of a rank distribution algorithm which assigns 

a random rank to a web page and then computes the rank of 

other web pages. The algorithms that are commonly used for 

the purpose of ranking are HITS, Page Rank algorithm and 

many more [14].  

D. Searcher 

This is the program that sifts through the millions of pages 

recorded in the database to find matches to a specific search. 

The searcher works on the output files from the indexer. It 

accepts user queries, runs them over the index, and returns 

computed search results to the issuer. The searcher is run by a 

web server and uses the Page Ranks to answer queries. 

III.  

III. NEED OF AN ADVANCED SEARCH ENGINE 

 

The enormous growth in information that we want to 

publish on the web has created the need and space for more 

advanced information retrieval systems to help fetch the 

information effectively. Many reasons can be cited for the 

need of an advanced search engine. 

 

• Complex Structure of the web: The internet has 

been aptly named as the Web because of its structure. 

The web is not organized and its complicated 

structure creates a lot of problems in effective 

management of data on the web. The hypertext 

documents are linked with each other through 

hyperlinks within them. This gives the user, the 

ability to choose what he will see next. Interestingly, 

there can be various links on different pages leading 

to the same document. A simple crawl mechanism 

may lead us to a voluminous database with a high 

degree of redundant data. Thus the crawler needs to 

have a good crawling strategy [10], i.e., a strategy for 

deciding whether to download the next page or not, 

by selecting only one of the many paths available for 

the same page and hence, avoid data redundancy. It 

may not seem to be an important issue but when the 

size and the structure of the web are taken into 

account, this problem can have deadly consequences 

on the effectiveness of the search engine. 

 

• Dynamic nature of the web: It is an important factor 

for large-scale Internet search engines. We can 

broadly classify the issue into three cases : 

1. Pages Added: The web is growing in size, 

and most studies agree that it grows at an 

exponential rate. This poses a serious 

challenge of scalability for search engines 

that aspire to cover a large part of the web. 

Pages are added everyday and it is the 

responsibility of the search engine to 

continuously grow and update its database 

about the latest link structure of the web. 

2. Pages Updated: Apart from the newly 



created pages, the existing pages are 

continuously updated [14]. Newer and more 

relevant information is added and the older 

ones are removed. Websites like news 

portals, etc are updated almost every minute 

and if the search engine's database is not 

updated with the current information, it is of 

no use to the user. Thus, the search engine 

must store a fresh copy of the pages stored. 

3. Pages Deleted: Finally, the problem of 

unavailability of pages also needs to be 

addressed. The less relevant pages are 

removed from time to time by the servers. 

The search engine must keep a check on the 

availability of the pages it has stored in its 

local database and remove there links if they 

are no more hosted. 

 

• Vast Ocean of data (WWW) to be used as the 

database to search from: Size of web cannot be 

calculated in less than petabytes and crawling the 

entire web can be a cumbersome task.  According to a 

study, interestingly, the highly relevant content is 

found very deep in the web. Hence, it can be seen as a 

problem where we have the limitation of both space 

and time. In the context of space, we need a local 

database of size that can store a copy of almost each 

and every page crawled by the crawler. Taking the 

time restriction into account, we need to have an 

efficient algorithm which can search the giant 

database fast enough to give the desired results in 

ample time. 

IV. PROPOSED SOLUTION 

 

On the basis of our study of the problems a basic search 

engine faces, we have come up with a solution which 

addresses most of the issues discussed in the previous section. 

We explored that crawlers consume the maximum amount 

of resources [9]: network bandwidth to download pages, CPU 

to evaluate and select URLs, and disk storage to store the text 

and links of fetched pages as well as other persistent data. 

Hence, there is a need to improve the working of the crawler 

considerably.  

Issues like complex structure of the web can be resolved 

by using special techniques such as URL matching and 

Content matching [10] where in all the pages downloaded by 

the crawler are first inspected for there content and compared 

with the copies available in the local database to avoid 

redundancy. 

Similarly, the large amount of data can be handled 

efficiently if it is classified on the basis of some parameters. 

For example, we can divide the entire database on the basis of 

content and store pages related to one category in one database 

and other category in another and so on. We can further reduce 

the amount of space required to store the data by applying 

some common compression- decompression techniques [9] on 

the database.   

Also, the time constraint can be handled with good 

indexing techniques and we can provide quality search results 

using a rank distribution algorithm [14]. 

Lastly, there is the issue of dynamic nature of the web. 

This problem can not be easily sorted out. Some smart and 

effective methods are needed if this issue has to be dealt with. 

Continuous changes in the web have to be matched with 

powerful refreshing techniques [2]. The local database 

should be consistently updated with the latest copies of 

updated pages. 

V. DESIGN OF THE PROPOSED MODEL 

 

In this section we give a detailed presentation of the design 

of a 'Hybrid' model. Swift is a distributed and scalable 

architecture which is extensible as well. The entire model has 

been designed in a way that new modules can be added any 

time for further improvements.  Figure 2 shows the complete 

design of Swift.  

The key features which make Swift a ‘Hybrid’ model are 

Compressor-Decompressor, Fingerprint matcher, Importance 

value calculator, Ranking Algorithm, Focused Crawlers and 

Smart Refresher algorithm in a Distributed setup. 

In the proposed model, the crawling process starts with a few 

URLs provided. It generates a repository of hundreds and 

thousands of pages from them and further, refreshes the local 

database from time to time. The content matching and 

database updation mechanisms follow the crawling operation. 

This complete process continues in the background repeatedly. 

When the user searches for a keyword, the Searcher and the 

Indexer modules use the repository in its current state as the 

database to search from. Figure 2 shows the flow of data 

among the components of Swift. 

A. Features 

• Distributed Architecture:  

The design proposed is based on a completely distributed 

architecture. The distribution of jobs to agents is an 

important problem, crucially related to the efficiency of 

the system. Therefore, each task must be performed in a 

fully distributed fashion, that is, no central coordinator 

can exist. Every agent interacts with either some agent or 

the Repository for taking the input or giving the processed 

output. Even the Refresher and Extractors are further 

distributed for applying the Focused Crawling approach. 

 

• Fingerprinting: 

Every time a page is downloaded by an Extractor, a 64-bit 

key is generated by applying MD5 algorithm [10] on the 

contents of the document. We call this key, a fingerprint 

of this page. This fingerprint can be used by both the 

Refresher and the Content Seen Tester. For each newly 

collected document, if we verify its fingerprint against the 

fingerprint of the previously collected documents, we can 



certainly reduce the data redundancy problem to a large 

extent and hence, address the space limitations. 

 

• Compression-Decompression: 

We can further reduce the amount of space required to an 

astonishing degree by using a few simple data 

compression techniques on the documents before storing 

them in the repository. During the testing phase of this 

module, we could reduce the size of the local repository 

by about 60% of the original size. Thus, this feature if 

taken into account can cause serious improvements. 

 

•  Heterogeneous crawling: 

As the size of the Web grows, it become s imperative to 

parallelize a crawling process, in order to finish 

downloading pages in a reasonable amount of time [13]. 

This feature suggests a crawler cluster with dedicated 

machines for crawling the web heterogeneously on the 

basis of the content. 

 

•  Smart Refreshing techniques: 

Even though there is an established protocol, Robot 

Exclusion Protocol [7] that can be used to get information 

about the page. very few websites actually implement this 

protocol and incorporate it in their pages. We follow the 

approach suggested by Risvik and Michelsen [2]. This 

approach uses a relatively simple algorithm for adaptively 

computing an estimate of the refresh frequency for a given 

document. Basically, this algorithm decreases the refresh 

interval if the document was changed between two 

retrievals and increases it if the document has not changed 

[2]. This is used as input to the scheduler, which 

prioritizes between the different documents and decides 

when to refresh each document. To decide whether the 

page has changed since the previous crawl, we apply a 

smart technique. On retrieving the document, we calculate 

its fingerprint and match it with its existing fingerprint. If 

they verify, it suggests that page has not changed and thus, 

we discard the new page. But if they do not verify, the old 

page is 

replaced by the new one and its fingerprints are updated in 

the URL database. 

 

• Importance value: 

 A small yet effective feature that gives weight age to the 

user's choices. Whenever a page is accessed by the user, 

its importance value is raised depicting that the page is a 

useful one. By default, it is a standard integer value 

assigned to every URL which gets incremented by 1 every 

time the URL is visited by the User. 

 

• Ranking algorithm: 

 Due to the Web’s size and the fact that users typically 

only enter one or two keywords, result sets are usually 

very large. Hence the ranking module has the task of 

sorting the results such that results near the top are the 

most likely to be what the user is looking for. In our 

model, we incorporate the Page Rank algorithm. The 

crawled portion of the Web is modeled as a graph with 

nodes and edges. Each node in the graph is a Web page, 

and a directed edge from node A to node B represents a 

hypertext link in page A that points to page B [14].  Page 

Rank is a link analysis algorithm that assigns a numerical 

weighting to each node of the graph generated with the 

purpose of "measuring" its relative importance. 

B. Working 

The working of the model can be explained as follows. To 

begin with, the Input Queue takes a list of seed URLs as its 

input from the URL Database and the Extractors repeatedly 

execute the following steps. Remove a URL from the queue, 

download the corresponding document, and extract any links 



contained in it. With the help of the Content Seen Tester, it is 

ensured that no extracted file is encountered before and there 

does not exist a copy of the same in the Repository. After the 

document has passed the Content Seen Test, its Fingerprint is 

saved in the URL Database. The document is then sent to the 

Compressor module which compresses the document and 

stores it in the Repository.  

Alongside, the refresher module works on refreshing the 

populated Repository. It takes the already visited URLs from 

the URL Database and downloads them. The refresher then 

applies the refreshing algorithm with the help of Fingerprinting 

mechanism and updates the local Repository with the fresh 

copies of existing URLs. 

On the other hand, when a user searches for a specific 

keyword(s), the Searcher module fires a query to the Keyword 

Matcher. The Keyword Matcher requests the Decompressor to 

decompress the documents stored in Repository one by one. It 

searches for the requested keyword(s) within each page it gets 

from the Decompressor and forwards the results to the 

Indexer. The Indexer further generates a graph of resulting 

documents and calculates a rank for each document. The 

Searcher fetches the results from the Indexer and displays the 

results in an ascending order of the ranks calculated. Finally, 

for all the links that are accessed by the User, an update is sent 

by the Searcher to the URL database to increment its 

Importance Value.  

 

VI. FUTURE WORK 

The size of the web is clearly a big challenge, and future 

evolution of web dynamics raises clear needs for even more 

intelligent models. One important dimension to be worked 

upon is the search quality. Search quality means being able to 

intelligently manipulate the query and fetch results that are as 

close as possible to the desired output. Features like keyword 

lexicon can be incorporated in the existing model.  

Another important research direction is to study more 

sophisticated text analysis techniques [8]. At the same time, 

the “Deep Web” is most likely growing at a rate much higher 

than the current “indexable” web. There is no unified and 

practical solution to aggregate the deep web on a large scale.  

VII. CONCLUSION 

We have presented Swift, a fully distributed, scalable, 

incremental and extensible model. We believe that Swift 

introduces new ideas in intelligent information systems, in 

particular the search engines.  Swift is an ongoing project, and 

our current goal is to successfully implement the proposed 

model. We have described the architecture and the operation 

of Swift in detail. Also, we have discussed the working of a 

search engine and highlighted how problems arise in all 

components of a basic search engine model. Swift copes with 

several of these problems by its key properties like 

Fingerprinting, Importance Value, Compression- 

Decompression, Smart Refresher Techniques and Ranking 

algorithms in a distributed environment. The overall 

architecture that we have described in this paper is quite 

simple and does not represent very novel ideas. The system 

architecture is relatively simple and hence, easy to grow.  

 REFERENCES 

[1] Qiang Zhu , “An Algorithm OFC For  The Focused Web Crawler”  in 

Proceedings of the Sixth International Conference , Hong Kong, Aug 

.2007 

[2] Knut Magne Risvik , Rolf Michelsen, “Search Engines and Web 

Dynamics”. 

[3]  Qingzhao , Tan,Prasenjit Mitra , C.Lee Giles, “Designing Clustering-

Based Web Crawling Policies for Search Engine Crawlers” 

[4] Altigran S. da Silva , Eveline A. Veloso , Paulo B. Golgher  “CoBWeb – 

A Crawler for the Brazilian Web”. 

[5] Gautam Pant , Padmini Srinivasan , Filippo Menczer “ Crawling the 

Web” 

[6] Vladislav Shkapenyuk , Torsten Suel “ Design and Implementation of a 

High-Performance Distributed Web  Crawler ”. 

[7] Younes Hafri , Chabane Djeraba “ Dominos : A New Web Crawler’s 

Design ”. 

[8] Brian Pinkerton “ WebCrawler : Finding What People Want ”. 

[9] Monica Peshave “ How Search Engines Work And a Web Crawler 

Application ”. 

[10] Allan Heydon < Marc Najork “ Mercator : A scalable , Extensible Web 

Crawler" June 1999. 

[11] Junghoo Cho , Hector Garcia-Molina “ Parallel Crawlers ”. 

[12] Carlos Castillo , Mauricio Marin , Andrea Rodriguez “ Scheduling 

Algorithms for Web Crawling ”. 

[13] Paolo Boldi , Bruno , Massimo Santini , Sebastiano Vigna “ UbiCrawler 

: A scalable Fully Distributed Web Crawler ”. 

[14] Arvind Arasu , Junghoo Cho , Hector Garcia-Molina , Andreas Paepcke 

, Sriram Raghavan “Searching the Web”. 

[15] Behnak Yaltaghian , Mark Chignell “ Re-ranking Search Results using 

Network Analysis  -  A case study with Google”. 

[16] Behnak Yaltaghian , Mark Chignell “ Effect of Different Network 
Analysis Strategies on Search Engine Re-Ranking ”. 

[17] Michelangelo Diligenti , Marco Gori , Marco Maggini  “ Web Page 

Scoring Systems for Horizontal and Vertical Search”. 

[18] Thomas Mandl “ Implementation and Evaluation of a Quality Based 

Search Engine ”.  

                                                           

 



ANKUSH GULATI 
 

 

SOFTWARE ENGINEER [FRESHER] 

 
 

Contact Information   

C-1/14 Mianwali Nagar, Paschim Vihar, New Delhi. 

Email: ankush.gulati@rediffmail.com 

 Phone: +91-11-25258214 

Mobile:  +91-9818049474 
 

 

 

Personal Information   

Date of Birth  25 Jun 1986 

Father’s Name  Mr. Jagdish Lal Gulati 

Gender  Male 

Nationality  Indian  
 

 

 

Career Objective  

To secure a challenging position that utilizes my education and interests in the fields of 

technical business and consulting. 
 

 

 

Educational Details   

Class Year School/College Percentage 

CGPA (upto 7th 

semester)       
B.Tech 

(Computer 

Science) 

2004-

08 

 Jaypee Institute Of Information Technology 

 University, Noida 
8.3 (84.84%) 

XII CBSE 2004 
 Hansraj Model School, 

 Punjabi Bagh, New Delhi 
77 % 

    X CBSE  2002 
 DAV Centenary Public School, 

 Paschim Enclave, New Delhi 
84 % 

 

 

 

Skills Information   

 Skill                        Details 

 Key Skills 

                    C / C++  

                       DOTNet (C#, ASP, VB) 

                    Java  

 Familiar With 

                      DBMS 

                      HTML, Javascript, PHP 

                      Adobe Photoshop 

                      Adobe Illustrator                    

 

 

 

 

 



Projects Undertaken   

S.No Details 

1. SWIFT : A Hybrid Search Engine 

B.Tech Project [In progress] 

Language : Java, C#, ASP.Net 

It is a research project that aims at developing a search engine that combines the 

best features from the existing designs and thus provide a hybrid model for effective 

search engines. 

**A research paper on the proposed design has been accepted by The 2008 

International Conference on Artificial Intelligence for publication. 

2. INDIAFOTOWALA.COM 

Website Development 

Language : HTML, JavaScript, PHP 

www.indiafotowala.com was a live project. The website was developed for the  

Ex-Chief Editor of INDIA TODAY, Mr. Dilip Banerjee.     

3. MOBILE IP SIMULATOR 

Language : C# (DOTNet) 

The project efficiently simulates the Mobile IP Tool using network programming 

techniques which we used to analyze the characteristics of Mobile IP in real time 

systems. 

4. ONLINE COUNSELLING SYSTEM 

Framework : .NET 

The aim was to create a simple but efficient online student counseling system for 

admissions.   

5. CUSTOMER CARE BACKEND FOR CELLULAR COMPANIES 

Language : C/Data Structures 

This project aims at providing front-end as well as back-end support to customer 

care executives.    

 

 

 

Achievements   

  1.  

 

 

 Written a research paper on intelligent information systems, “HYRBID MODEL FOR  

SEARCH ENGINES” accepted by The 2008 International Conference on Artificial 

Intelligence, Las Vegas for publication. 

  2. 
 Awarded merit prize for performance in 35th “Youth Parliament” Competition 

 by Ministry of Parliamentary Affairs, Government of India.    

  3. 
 Conferred upon the title of CYBER SCIENCE MASTER on being 

 ranked among the top 1000 students of India’s first online Science Olympiad. 

               

      

Extra Curricular Activities  

  1.       Contributed in organizing the college fest JIVE’06 as 

• The Web Developer for the fest. 

• Coordinated a technical event.  

  2.       Held the post of “Literary Activities Minister” in School Parliament  

            for 2 consecutive years.    

  3.       Active member of college dramatics society. Won two 2nd prizes at Le Fiestus ’06, the 

annual cultural festival at JUIT, Waknaghat in a street play and a stage play 

competition. 

  


	Final Report Front_040303.pdf
	REPORT_MIDDLE.pdf
	Report_appendix.pdf
	paper.pdf
	CV.pdf

