
Spatial - Temporal Random Indexing for Event Detection in Newswire Data

Rohit Menon Ankush Gulati

 rmenon@cs.stonybrook.edu angulati@cs.stonybrook.edu

 107710848 107569466

Overview:

The rapid increase in the amount of newswire stories stored on electronic devices and the

internet raises new challenges for information retrieval. Use of query based tools is not suitable

for generic searches. There is a need for an intelligent system capable of automatically locating

events in continuous stream of newswire data. This is called automatic event detection.

In this project, we present a novel approach for automatic event detection in newswire data,

using spatial temporal random indexing. Our approach involves building a 4 dimensional vector

space where each word in the corpus is uniquely represented using a large sparse vector,

unique in time and location. Next we analyze the spatially and temporally annotated space to

determine significant semantic shifts over time and space. Finally we demonstrate, how the

shift generated can be used to predict the events that occur.

Keywords:

Random Indexing, Spatial Temporal annotated Semantic space, Crawler, Semantic shift.

Central Idea

The central idea of the paper can be summarized by the following steps:

 Collect newswire data on topics of interest that span over different locations around the

globe and also over a time span of days to months to years. This has been done by

developing a customized crawler capable of collecting desired data in correct form.

 Clean and verify the format of the dataset before processing it to generate the vector

space.

 Develop a spatially and temporally annotated vector space, of four dimensions, by

assigning vectors to each word. For a set of interesting words, we calculate the

semantics with at different timestamps at different locations.

 Compare the vectors in different location or time slices for same location, and calculate

the semantic shifts. Use standard deviation and mean values to indicate significant

semantic shifts.

 Trace back the shift to documents and manually determine the reason for the shift.

The project has been implemented considering numerous performance issues. Also

experimental results with changes in vector sizes, window size, the density of vector values

w.r.t. dimensions have been presented.

Basic Terminology:

 Random Indexing

Random Indexing is a vector space technique used for approximation as proposed by

Kanerva et al. (2000) as an alternative for Single Valued decomposition for Latent

Semantic Analysis. While the SVD results in significant improvements in information

retrieval, it is highly inefficient and requires the generation of the entire co -occurence

matrix and its decomposition before any measurements can be made.

Random Indexing avoids these by creating a short vector for each context, and

producing the context vector for each term by summing index vectors for each context

as it reads and thus helps in building the semantic space incrementally.

A d length index vector is allocated to each unique context as it is found. These vectors

are sparse and hence can contain mostly zeros and few +/- 1 (∈). Each element in

allocated one of these values with the probability:

Value Probability

+1
∈

0 ∈

-1
∈

These index vectors are generated on the fly as more and more corpus is read. Each new

context generates a new index vector. The index vector is sum of all the contexts in

which the index vector occurs.

The context vector for a particular term t present in context C1 = [1,0,0,-1] and C2 =

[0,1,0,-1] would be [1,1,0,-2]. Now if suppose the context one occurs again, then

instead of creating a new index vector, we would just do a summation to get the result

as [2,1,0,-3]. Random Indexing provides support for incremental sampling. Thus context

can be added on the fly.

 Semantic Space

Semantic space represents a word's semantics mapped to high dimensional vectors in

geometric space. The semantics of a word w is defined as follows:

semantics(w) = ∈

Here w is the focus word, wi be a co-occurring word at distance i and index(wi) be its

index vector. Now n represents the window size over which co - occurring words are

chosen.

The dimensions in space represent the difference in meaning between the words, thus

words with similar semantics will have similar vector representation.

 Spatial Temporal Annotated Semantic Space:

Adding space and time dimensions to the semantic space model could be an effective

way of tracking changes in semantics of words over space and time. There are three

ways these could be implemented

a) A separate semantic space for each location and each time.

b) A separate semantic space for each location. But each location space will contain

all the time spans in the same space.

c) A single combined semantic space containing each location and each time span

within the location.

The drawback of choosing the first two designs are that when multiple semantic spaces

are used, there is no guarantee that specific semantic meaning associated with some

dimension i will be same in another space.

 Tensor Representation of Semantic Space

 Spatial Temporal Random Indexing

Spatial Temporal Random Indexing incorporates time and space into a single semantic

space. Thus instead of using just word X Semantic Vector. It now uses Word X Semantic

Vector X Time Tension X Location Tensor. This has been effectively illustrated in the

above diagram.

This design has numerous advantages, mentioned as follows :

a) As the semantic space is created incrementally, we can add any number of

documents and the space would accommodate the change.

b) Next it is possible to do a comparison of words over arbitrary time spans over

same location. As well as compare shifts over different locations over different

times.

c) It has greatly reduced time and memory requirement as compared to using SVD

on the same sized corpus.

Input Documents : D = ({(L0, T0, D0), (L0, T1, D1),......................................., (L0, Tk, Dk)}

 {(L1, T0, D0), (L1, T1, D1),......................................., (L1, Tk, Dk)}

 {(Lj, T0, D0), (Lj, T1, D1),......................................., (Lj, Tk, Dk)})

Where Lj - Is the jth location where the corpus exists, and Di is the set of documents

occurring at time Ti.

Semantics(w,t,l) = ∈ ∈

Where Dj is all documents belonging to location Lj and Ct are all documents in Dj with

timestamps t. The slice can be defined as follows :

Slice(w) = {Lj, Semantics of (w,t,l)| Di ∈ L, w ∈ Di , i = 1, k }

Using the above slice formula, we can compute the semantic shift over different time

ranges as well as over different locations.

Also it is possible to compare interesting words over locations using the above formula

by using the semantic shifts for same time span. The final semantic shifts can be tracked

back to the documents to determine the reason for the shift.

Baseline for Project:

The baseline model for the project is based on the idea of tf - idf (term frequency -

inverse document frequency). This is often used in information retrieval and text

mining. It basically represents a weight that indicates how important the word is to the

document.

Term count =

If there is a certain term T that is highly popular and appears a large number of times N

in the corpus. But suppose in latter time span, the number reduces to k << N, then the

term T is surely going to undergo a semantic shift.

Thus, change in term frequency over time and location can be used as a very simple way

of determining semantic shift.

The results of Baseline using Term Frequency ratio for dataset of " Satyam" with

Location = Bangalore, India

TimeSpan = 6months

Interesting Words : mahindra, india, fraud, satyam

Start Time : Dec 2007

Words \ Timespan Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10

mahindra 0 0 0.0018 0.2060 0.2155 0 0.0236

India 0.0123 0.0678 0.0144 0.5472 0.4977 0 0.8229

fraud 0 0 0.0047 0.1993 0.1867 0 0.6770

satyam 0.0067 0.0211 0.0420 0.4391 0.2672 0 0.6145

The baseline is stored in a 4 dimensional hash map structure.

{Interesting word, Location, Time Span -> Term frequency Ratio}

Thus it has the same structure as the resultant matrix, to store the baseline values. The

baseline values provide a threshold and also an simple analysis as to which slots are

going have zero shifts, as the word does not occur in the corpus.

Data Collection

We have collected the data from news agency websites like www.reuters.com. The

dataset consists of articles classified on the basis of timestamp and location posted on

the websites of news agencies like Reuters.

 Data Set

We have compiled a dataset of more than 5000 articles on varied topics like apple inc,

satyam technologies, congress, etc. over a period of more than four years across

different geographical locations across the globe.

To present a broader picture of our work and its features, we have tried to select topics

that have undergone substantial change either over a period of time or if they vary a lot

for different locations or in some cases show variation on the basis of both time and

locations. For instance, the renowned Indian IT company Satyam Technologies went

bankrupt in 2009 when a financial fraud came to light. The company was later acquired

by Tech Mahindra and was renamed as Mahindra Satyam. We have analysed the

semantic shift for Satyam in detail in our results section to provide a clear picture of our

work and its key features.

 Process

Because of the large volume of dataset we needed, the process of data collection was

automated.

Figure: System Architecture of Crawler for Data Collection

We wrote a simple JAVA Crawler that crawls www.reuters.com and scraps all the

articles related to a desired search query. It then writes all the searched articles into a

directory named as per the search query in various files each representing a different

geographical location. Each of the document contains multiple articles one per line

sorted on the basis of their timestamps. For example, a document for location X would

be X.txt and have the following format:

 0122012200

 <Article 1 Text>

 0122022212

 <Article 2 Text>

 .

The information like geographical location and timestamp represent the place and time

of article publish and are collected while crawling from the article page itself. There is a

limitation both on side of parser and reuters.com that certain times only the recent

news articles are displayed by search and hence only they are crawled.

Methodology:

The entire process can be broadly broken down into four major parts:

1. Creating the dataset

2. Generating random vectors

3. Reading & preprocessing the dataset.

4. Generation of semantic vector space.

1. Creating the dataset

To accumulate a large repository of articles, we automated the data collection process.

We wrote a crawler that searches the desired news agency website and extracts the

relevant articles for us in a specified format. We have implemented a website specific

crawler for www.reuters.com that takes the input query and fetches all the articles

related to the query from the website by parsing the DOM structure of the HTML page.

The implementation of the web crawler is in JAVA and uses an open source library JSoup

for converting the DOM Structure of the source of crawled html page to a clean XML

that can then be read using simple JAVA routines. It takes generic parameters like

search query, URL (reuters.com) & the result directory path and writes the relevant

articles from the search result in the directory with the name of the search query in

separate documents for different locations in a 'one article per line' format.

The system can be easily used and extended by others who need to generate large

datasets of news articles for their research work.

We have written a java program Caller.java that works as a handler and runs the other

three subsections one after the other. We have implemented the entire functionality

using multithreading where in a thread is created for each document (i.e. per location)

thus allowing faster computations for large datasets.

2. Generating random vectors

 Every word in the corpus is assigned a random index vector. Each occurrence of the

 word, is assigned the same vector and a new vector is not generated each time. Each

 vector is made up of 10,000 dimensions in our implementation. Here each dimension is

 responsible for representing a different semantic for each word.

 To generate a random index vector for each word in corpus, we perform the following

 steps:

a) Generate a random number between 4-6 which represents the window for

sparseness of the vector. Let this be X.

b) Then generate X random numbers between 0 and 10,000. Which ever dimension

has not been used for more than 5 times, by other words, we use those. Thus fill

in X positions in 10,000 dimensions vector.

c) Now to fill in the value, we have an option of either 1 or -1. We generate a

random number between 0 and 1000. If number is less than 500, we assign 1

else we assign -1.

We perform this entire process for every word in the corpus. These vectors are

almost perfectly orthogonal as a dimension is not used for more than 5 times.

Moreover using just 4-6 dimensions of the vector makes it highly sparse considering

the size if 10,000 dimensions.

3. Reading & preprocessing the dataset

Once the dataset has been generated and stored in the specified format in flat files with

the help of the crawler, we read the dataset from these files into a {location, timestamp,

article} format hashmap. Similar to other semantic space approaches that used web-

gathered data, before the corpus is used for performing event detection, the corpus is

preprocessed to render it more uniform. While writing the articles into the hashmap we

apply the following 9 preprocessing rules:

a) Remove all numbers

b) Remove all html mark-up and email addresses

c) Remove unusual punctuation, and separate all other punctuation from words

d) Remove stop words like the, has, it from article text for better precision.

e) Converting all words to lower case

f) Strip HTML tags (if any) from the text.

g) Remove email ids/ web addresses from the article text.

h) Discard articles with missing timestamps/location information.

i) Associate each entry with a numeric timestamp and a location.

This pre-processing allows the model to gracefully handle several irregularities in writing

style, such as inconsistent use of punctuation and capitalization. Once the {location,

timestamp, article} hashmap is generated, it is input into SemanticVectorGenerator.

4. Generation of semantic vector space

The semantic vector space is passed the Hashmap{location, timestamp, article} along

with the timespan, interesting words list, and the window size. Now the structure of the

semantic vector is space is as follows : Hashmap{Interesting word, HashMap{Location,

HashMap{Timespan, Vector}}}. Thus the space represents the vector of each interesting

word, at each location, at each timespan.

On receiving the input of HashMap{location, timestamp, article}, we use multiple

threads to process for each location. We analyze each interesting word for every

location. For each location, first we determine which articles are in the same time span.

Once we are determine that, then we go to every occurrence of one interesting word.

Next using the window size we compute a sum of the vector along with the vectors of

the neighboring words. We do this for every interesting word. We keep on doing till all

documents for a location is not processed. Thus we get the resultant of

Hashmap{Interesting word, HashMap{Location, HashMap{Timespan, Vector}}}

At the same time we also populate a structure called bSpace which stores the baseline

values which are directly computed by using term frequency as explained above

Once the space is ready, now we need to calculate the shifts between vectors of the

words in different time span. For determining semantic shift, we use cosine similarity.

Cosine similarity indicates how similar two vectors are. Hence we use 1 - (cosine

similarity) as a measure of semantic shift.

Thus we loop over the entire Semantic space called stSpace, and to determine the

semantic shift for a word between different time spans. Once this is done, the entire

results is stored in a resultant space called rSpace of the format Hashmap{Interesting

word, HashMap{Location, HashMap{Timespan, Semantic Shift}}}. Finally using the result

rSpace, we determine the standard deviation for each timespan.

Results and Evaluation:

In this section, we present a detailed set of results and their analysis. Also numerous

variations of the results can be observed.

Default window size :- 4, Default vector size: 10,000, Sparse :- 4-6

 Results of the algorithm when applied on dataset "Satyam" with a timespan of 6 months

with Location : Bangalore.

Timespan /
Interesting Word Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10

Mahindra 0 0 0.7284 0.4515 0 0 0

India 0.5342 0.3367 0.4771 0.4593 0 0 0.6426

Fraud 0 0 0.4457 0.3457 0 0 0

Satyam 0.5065 0.4978 0.5765 0.3446 0 0 0.8298

Standard Deviation 0.4632 0.4128 0.6582 0.5154 0 0 0.66

a) Here the entire span of the time ranges from Dec 2007 to Dec 2010 with a steps

of 6 months. The table presents the semantic shifts that every interesting word

undergoes over every time span.

b) A value of 0 for semantic shift indicates the term does not occur in the timespan.

Whereas the value of 1 indicates that there is a complete change in the

semantics of the word. We observe that, as compared to the shifts determined

from the baseline, these values are quite high and more accurate. This is

because, baseline computation takes into consideration only the term frequency,

while the implemented algorithm not only considers the frequency but also the

neighboring words to incorporate the context of each word.

c) Standard deviation is used as a threshold factor to determine which shifts are

significant and which shifts are not. The values in bold indicate the shifts that are

greater than standard deviation for each time span.

d) Lets us consider each Bold value and hence conclude on the effectiveness of

the method for event detection -

1) Mahindra took over Satyam on 14th April 2009. This lies in the time span of 6

months starting Dec 2008. Till then Mahindra was never associated with Satyam.

Hence the values are 0 for previous spans. And then there is news about

Mahindra take over Satyam in every newspaper. Hence the sudden semantic

shift. Thus using the time span we could track back the reason for semantic shift.

2)Satyam fraud case by Ramalinga Raju came out in Jan 2008. Hence as you can

see the result for fraud first shows a value in range Dec 2008 span of 6 months.

3) Before Dec 2008, we cannot find words other than Satyam to occur with high

semantic shift. This was because during this time, Satyam was in news for

different reasons ranging from the their quarterly results to Satyam being

announced the 2008 winner of the coveted Golden Peacock Award for Corporate

Governance under Risk Management and Compliance Issues.

The above graph represents the same semantic shifts shown in the table. Thus from the

analysis of the results we see that, we can effectively detect events by running Random

Indexing.

 Results of the algorithm when applied on dataset "Satyam" with a timespan of 6 months

with Location : Mumbai

Timespan\
Interesting Words Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10

mahindra 0 0 0.2304 0.1669 0 0.1344 0.326

india 0.3923 0.3267 0.3212 0.3189 0.5968 0.3789 0.7155

fraud 0 0.7649 0.3594 0.2444 0 0.3734 0

satyam 0.8261 0.5613 0.2006 0.1511 0.315 0 0.5656

Standard Deviation 0.6118 0.6061 0.3497 0.3047 0.4228 0.3518 0.6118

0

0.2

0.4

0.6

0.8

1

Apr-07 Nov-07 Jun-08 Dec-08 Jul-09 Jan-10 Aug-10 Feb-11

Se
m

an
ti

c
Sh

if
t

TIMESPAN

mahindra

india

fraud

satyam

The above results are from a new location Mumbai, but for the same time span. We see

a considerable change in the results and the pattern. This is mainly because, Satyam has

numerous offices in Bangalore, plus Bangalore is the IT Hub (Silicon Valley) of India.

Whereas Mumbai is the financial center and hence the incident lost its impact with time

and you can see that the word India has the most semantic shift in most timespans.

The above graph clearly shows a different trend over the previous graph for location of

Bangalore.

 Results for algorithm applied on dataset of "Satyam" with a timespan of 1 year and

location of Bangalore

Timespan\
Interesting Word 2007 2008 2009 2010

mahindra 0 0.4591 0.101 0

india 0.4451 0.3456 0.2155 0.6519

fraud 0 0.4312 0.2533 0

satyam 0.3956 0.1321 0.1873 0.6635

Standard Deviation 0.3746 0.4127 0.2019 0.5853

From the above table, we clearly see that it is difficult to detect events, if the timespan

is large. This is because events generally occur over a short span of few months and

then disappear. Thus shorter the time span, better is the accuracy of semantic shift

calculation and also event prediction.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Apr-07 Nov-07 Jun-08 Dec-08 Jul-09 Jan-10 Aug-10 Feb-11

Se
m

an
ti

c
Sh

if
t

TIMESPAN

mahindra

india

fraud

satyam

Standard Deviation

 Result on Algorithm applied on dataset of "Congress" over a period of 1 day each in a

week with location of Washington.

Timespan/
InterestingWord Sunday Monday Tuesday Wednesday Thursday Friday Saturday

washington 0.5943 0.3449 0.8139 0.8035 0.7963 0.8025 0.488

federal 0.3716 0 0 0.6947 0.6169 0.4787 0.2244

congress 0.265 0.6131 0.6007 0.464 0.3492 0.2912 0.2399

republican 0.3328 0.6841 0 0 0.4721 0.5049 0.365

companies 0.3894 0 0 0 0.4476 0.2965 0.4486

obama 0.1659 0.4718 0.8404 0.6749 0.3655 0.3803 0.1803

Standard Dev 0.4842 0.6233 0.7661 0.7592 0.6636 0.6328 0.4529

 The above table represents semantic shifts calculated over a period of one week with

shifts of one day each. As this is too short duration to predict any strong event we observe the

entire shifts to be scattered.

Thus we can conclude that when the algorithm is utilized for detecting events over a short span

of time, if the corpus is not heavily oriented towards the event, the algorithm might not

perform well. But in other case, it might surely give a correct result. Thus the algorithm can be

used for live detection of events as it allows incremental sampling as mentioned before.

0

0.2

0.4

0.6

0.8

1

Sunday Monday Tuesday WednesdayThursday Friday Saturday

Se
m

an
ti

c
Sh

if
t

Timespan

WASHINGTON

FEDERAL

CONGRESS

REPUBLICAN

COMPANIES

OBAMA

 Results for same data set as above of "Congress" for location washington, but with a

changed window size of 100

Timespan/
Interesting Word Sun Mon Tues Wed Thurs Fri Sat

washington 0.4940 0.3482 0.7499 0.7604 0.7257 0.7441 0.3977

federal 0.4056 0.0000 0.0000 0.7373 0.6702 0.5425 0.2698

congress 0.2684 0.5926 0.5841 0.4683 0.3553 0.2931 0.2350

republican 0.3115 0.6941 0.0000 0.0000 0.4351 0.4881 0.3320

companies 0.4317 0 0 0 0.5018 0.3296 0.4813

obama 0.1387 0.4202 0.8021 0.6399 0.3277 0.3430 0.1539

 The above table indicates that semantic shift values do not show major change on

 changing the window size but it does show smaller shift values. Thus we can conclude,

 that we could increase the window size, if the event has not been very popular. This

 would help consider more neighbouring terms and hence may show better results.

 Results for same data set as above of "Congress" for location washington, but with a

changed value of sparseness from 6-4 to 950-1000

Timespan/
Interesting word Sun Mon Tues Wed Thurs Fri Sat

washington 0.5293 0.3386 0.7692 0.7747 0.7463 0.7372 0.4259

federal 0.3544 0 0 0.6735 0.6141 0.4722 0.2347

congress 0.2836 0.6141 0.6186 0.4984 0.3950 0.3258 0.2509

republican 0.3300 0.6891 0 0 0.4506 0.5024 0.3527

companies 0.4185 0 0 0 0.4881 0.3140 0.4615

obama 0.1336 0.4203 0.7947 0.6225 0.3098 0.3226 0.1484

 The above table indicates that decreasing the sparseness of the index vector does no
 result a huge change in the semantic shifts computed. However it does reduce the
 orthogonality of vectors. This can reduce the accuracy of the algorithm as the vectors
 need to be orthogonal. Thus the index vectors should be as sparse as possible.

Bibliography
1. Curran, James Gorman and James R. Random Indexing using Statistical Weight Functions. University

of Sydney. s.l. : Conference on Empirical Methods in Natural Language Processing, 2006.

2. Standard Deviation. Wikipedia. [Online] http://en.wikipedia.org/wiki/Standard_deviation.

3. Stevens, David Jurgens and Keith. Event Detection in Blogs using Temporal Random Indexing.

University of California, Los Angeles. s.l. : Association for Computational Linguistics, 2009.

4. tf-idf. Wikipedia. [Online] http://en.wikipedia.org/wiki/Tf%E2%80%93idf.

5. reuters. [Online] http://reuters.com.

6. jsoup : Java HTML Parser. [Online] http://jsoup.org/.

7. epoch convertor. [Online] http://www.epochconverter.com/.

