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Overview: 

The rapid increase in the amount of newswire stories stored on electronic devices and the 

internet raises new challenges for information retrieval. Use of query based tools is not suitable 

for generic searches. There is a need for an intelligent system capable of automatically locating 

events in continuous stream of newswire data. This is called automatic event detection. 

In this project, we present a novel approach for automatic event detection in newswire data, 

using spatial temporal random indexing. Our approach involves building a 4 dimensional vector 

space where each word in the corpus is uniquely represented using a large sparse vector, 

unique in time and location. Next we analyze the spatially and temporally annotated space to 

determine significant semantic shifts over time and space. Finally we demonstrate, how the 

shift generated can be used to predict the events that occur. 
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Central Idea 

The central idea of the paper can be summarized by the following steps: 

 Collect newswire data on topics of interest that span over different locations around the 

globe and also over a time span of days to months to years. This has been done by 

developing a customized crawler capable of collecting desired data in correct form. 

 Clean and verify the format of the dataset before processing it to generate the vector 

space. 

 Develop a spatially and temporally annotated vector space, of four dimensions, by 

assigning vectors to each word. For a set of interesting words, we calculate the 

semantics with at different timestamps at different locations. 

 Compare the vectors in different location or time slices for same location, and calculate 

the semantic shifts. Use standard deviation and mean values to indicate significant 

semantic shifts. 

 Trace back the shift to documents and manually determine the reason for the shift. 

 



The project has been implemented considering numerous performance issues. Also 

experimental results with changes in vector sizes, window size, the density of vector values 

w.r.t. dimensions have been presented.  

Basic Terminology: 

 Random Indexing 

Random Indexing is a vector space technique used for approximation as proposed by 

Kanerva et al. (2000) as an alternative for Single Valued decomposition for Latent 

Semantic Analysis. While the SVD results in significant improvements in information 

retrieval, it is highly inefficient and requires the generation of the entire co -occurence 

matrix and its decomposition before any measurements can be made.  

 

Random Indexing avoids these by creating a short vector for each context, and 

producing the context vector for each term by summing index vectors for each context 

as it reads and thus helps in building the semantic space incrementally.  

 

A d length index vector is allocated to each unique context as it is found. These vectors 

are sparse and hence can contain mostly zeros and few +/- 1 (∈).  Each element in 

allocated one of these values with the probability: 
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These index vectors are generated on the fly as more and more corpus is read. Each new 

context generates a new index vector. The index vector is sum of all the contexts in 

which the index vector occurs. 

 

The context vector for a particular term t present in context C1 = [1,0,0,-1] and C2 = 

[0,1,0,-1] would be [1,1,0,-2].  Now if suppose the context one occurs again, then 

instead of creating a new index vector, we would just do a summation to get the result 

as [2,1,0,-3]. Random Indexing provides support for incremental sampling. Thus context 

can be added on the fly. 

  



 Semantic Space 

Semantic space represents a word's semantics mapped to high dimensional vectors in 

geometric space. The semantics of a word w is defined as follows: 

 

semantics(w) =                        ∈   

 

Here w is the focus word, wi be a co-occurring word at distance i and index(wi) be its 

index vector. Now n represents the window size over which co - occurring words are 

chosen. 

 

The dimensions in space represent the difference in meaning between the words, thus 

words with similar semantics will have similar vector representation.  

 

 Spatial Temporal Annotated Semantic Space: 

Adding space and time dimensions to the semantic space model could be an effective 

way of tracking changes in semantics of words over space and time. There are three 

ways these could be implemented 

a) A separate semantic space for each location and each time. 

b) A separate semantic space for each location. But each location space will contain 

all the time spans in the same space.  

c) A single combined semantic space containing each location and each time span 

within the location.  

 

The drawback of choosing the first two designs are that when multiple semantic spaces 

are used, there is no guarantee that specific semantic meaning associated with some 

dimension i will be same in another space. 

    

 
   Tensor Representation of Semantic Space 



 Spatial Temporal Random Indexing 

Spatial Temporal Random Indexing incorporates time and space into a single semantic 

space. Thus instead of using just word X Semantic Vector. It now uses Word X Semantic 

Vector X Time Tension X Location Tensor. This has been effectively illustrated in the 

above diagram. 

This design has numerous advantages, mentioned as follows : 

a) As the semantic space is created incrementally, we can add any number of 

documents and the space would accommodate the change. 

b) Next it is possible to do a comparison of words over arbitrary time spans over 

same location. As well as compare shifts over different locations over different 

times. 

c) It has greatly reduced time and memory requirement as compared to using SVD 

on the same sized corpus. 

 

Input Documents : D = ({(L0, T0, D0), (L0, T1, D1),......................................., (L0, Tk, Dk)} 

       {(L1, T0, D0), (L1, T1, D1),......................................., (L1, Tk, Dk)}  

 

     {(Lj, T0, D0), (Lj, T1, D1),......................................., (Lj, Tk, Dk)}) 

 

Where Lj - Is the jth location where the corpus exists, and Di is the set of documents 

occurring at time Ti.  

  

Semantics(w,t,l) =                          ∈      ∈   

 

Where Dj is all documents belonging to location Lj and Ct are all documents in Dj with 

timestamps t. The slice can be defined as follows : 

 

Slice(w) =  {Lj, Semantics of (w,t,l)| Di ∈ L, w ∈ Di , i = 1, k } 

 

Using the above slice formula, we can compute the semantic shift over different time 

ranges as well as over different locations. 

 

Also it is possible to compare interesting words over locations using the above formula 

by using the semantic shifts for same time span. The final semantic shifts can be tracked 

back to the documents to determine the reason for the shift. 

 

 

 



Baseline for Project: 

 

The baseline model for the project is based on the idea of tf - idf (term frequency - 

inverse document frequency). This is often used in information retrieval and text 

mining. It basically represents a weight that indicates how important the word is to the 

document.  

 

Term count = 
                         

                                     
 

 

If there is a certain term T that is highly popular and appears a large number of times N 

in the corpus. But suppose in latter time span, the number reduces to k << N, then the 

term T is surely going to undergo a semantic shift. 

 

Thus, change in term frequency over time and location can be used as a very simple way 

of determining semantic shift.  

 

The results of Baseline using Term Frequency ratio for dataset of " Satyam" with 

Location = Bangalore, India 

TimeSpan = 6months 

Interesting Words : mahindra, india, fraud, satyam 

Start Time : Dec 2007 

 

Words \ Timespan Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 

mahindra 0 0 0.0018 0.2060 0.2155 0 0.0236 

India 0.0123 0.0678 0.0144 0.5472 0.4977 0 0.8229 

fraud 0 0 0.0047 0.1993 0.1867 0 0.6770 

satyam 0.0067 0.0211 0.0420 0.4391 0.2672 0 0.6145 

 

 

The baseline is stored in a 4 dimensional hash map structure. 

{Interesting word, Location, Time Span -> Term frequency Ratio} 

 

Thus it has the same structure as the resultant matrix, to store the baseline values. The 

baseline values provide a threshold and also an simple analysis as to which slots are 

going have zero shifts, as the word does not occur in the corpus. 

 



Data Collection 

 

We have collected the data from news agency websites like www.reuters.com. The 

dataset consists of articles classified on the basis of timestamp and location posted on 

the websites of news agencies like Reuters.  

 

 Data Set 

We have compiled a dataset of more than 5000 articles on varied topics like apple inc, 

satyam technologies, congress, etc. over a period of more than four years across 

different geographical locations across the globe. 

 

To present a broader picture of our work and its features, we have tried to select topics 

that have undergone substantial change either over a period of time or if they vary a lot 

for different locations or in some cases show variation on the basis of both time and 

locations. For instance, the renowned Indian IT company Satyam Technologies went 

bankrupt in 2009 when a financial fraud came to light. The company was later acquired 

by Tech Mahindra and was renamed as Mahindra Satyam. We have analysed the 

semantic shift for Satyam in detail in our results section to provide a clear picture of our 

work and its key features.  

 

 Process 

Because of the large volume of dataset we needed, the process of data collection was 

automated. 

 
Figure: System Architecture of Crawler for Data Collection 

 

We wrote a simple JAVA Crawler that crawls www.reuters.com and scraps all the 

articles related to a desired search query. It then writes all the searched articles into a 

directory named as per the search query in various files each representing a different 

geographical location. Each of the document contains multiple articles one per line 

sorted on the basis of their timestamps. For example, a document for location X would 

be X.txt and have the following format: 



 0122012200 

 <Article 1 Text> 

 0122022212 

 <Article 2 Text> 

 . 

 

The information like geographical location and timestamp represent the place and time 

of article publish and are collected while crawling from the article page itself.  There is a 

limitation both on side of parser and reuters.com that certain times only the recent 

news articles are displayed by search and hence only they are crawled. 

 

Methodology: 

 

The entire process can be broadly broken down into four major parts: 

1. Creating the dataset 

2. Generating random vectors 

3. Reading & preprocessing the dataset. 

4. Generation of semantic vector space. 

 

1. Creating the dataset 

To accumulate a large repository of articles, we automated the data collection process. 

We wrote a crawler that searches the desired news agency website and extracts the 

relevant articles for us in a specified format. We have implemented a website specific 

crawler for www.reuters.com that takes the input query and fetches all the articles 

related to the query from the website by parsing the DOM structure of the HTML page. 

The implementation of the web crawler is in JAVA and uses an open source library JSoup 

for converting the DOM Structure of the source of crawled html page to a clean XML 

that can then be read using simple JAVA routines. It takes generic parameters like 

search query, URL (reuters.com) & the result directory path and writes the relevant 

articles from the search result in the directory with the name of the search query in 

separate documents for different locations in a 'one article per line' format. 

The system can be easily used and extended by others who need to generate large 

datasets of news articles for their research work. 

 

We have written a java program Caller.java that works as a handler and runs the other 

three subsections one after the other. We have implemented the entire functionality 

using multithreading where in a thread is created for each document (i.e. per location) 

thus allowing faster computations for large datasets.  



 

2. Generating random vectors 

 Every word in the corpus is assigned a random index vector. Each occurrence of the 

 word, is assigned the same vector and a new vector is not generated each time. Each 

 vector is made up of 10,000 dimensions in our implementation. Here each dimension is 

 responsible for representing a different semantic for each word. 

 To generate a random index vector for each word in corpus, we perform the following 

 steps: 

a) Generate a random number between 4-6 which represents the window for 

sparseness of the vector. Let this be X. 

b) Then generate X random numbers between 0 and 10,000. Which ever dimension 

has not been used for more than 5 times, by other words, we use those. Thus fill 

in X positions in 10,000 dimensions vector. 

c) Now to fill in the value, we have an option of either 1 or -1. We generate a 

random number between 0 and 1000. If number is less than 500, we assign 1 

else we assign -1. 

 

We perform this entire process for every word in the corpus. These vectors are 

almost perfectly orthogonal as a dimension is not used for more than 5 times. 

Moreover using just 4-6 dimensions of the vector makes it highly sparse considering 

the size if 10,000 dimensions. 

 

3. Reading & preprocessing the dataset 

 

Once the dataset has been generated and stored in the specified format in flat files with 

the help of the crawler, we read the dataset from these files into a {location, timestamp, 

article} format hashmap. Similar to other semantic space approaches that used web-

gathered data, before the corpus is used for performing event detection, the corpus is 

preprocessed to render it more uniform.  While writing the articles into the hashmap we 

apply the following 9 preprocessing rules:  

  

a) Remove all numbers 

b) Remove all html mark-up and email addresses 

c) Remove unusual punctuation, and separate all other punctuation from words 

d) Remove stop words like the, has, it from article text for better precision. 

e) Converting all words to lower case 



f) Strip HTML tags (if any) from the text. 

g) Remove email ids/ web addresses from the article text. 

h) Discard articles with missing timestamps/location information. 

i) Associate each entry with a numeric timestamp and a location. 

  

This pre-processing allows the model to gracefully handle several irregularities in writing 

style, such as inconsistent use of punctuation and capitalization. Once the {location, 

timestamp, article} hashmap is generated, it is input into SemanticVectorGenerator. 

 

4. Generation of semantic vector space 

 

The semantic vector space is passed the Hashmap{location, timestamp, article} along 

with the timespan, interesting words list, and the window size. Now the structure of the 

semantic vector is space is as follows : Hashmap{Interesting word, HashMap{Location, 

HashMap{Timespan, Vector}}}. Thus the space represents the vector of each interesting 

word, at each location, at each timespan.  

 

On receiving the input of HashMap{location, timestamp, article},  we use multiple 

threads to process for each location. We analyze each interesting word for every 

location. For each location, first we determine which articles are in the same time span. 

Once we are determine that, then we go to every occurrence of one interesting word. 

Next using the window size we compute a sum of the vector along with the vectors of 

the neighboring words. We do this for every interesting word. We keep on doing till all 

documents for a location is not processed. Thus we get the resultant of  

Hashmap{Interesting word, HashMap{Location, HashMap{Timespan, Vector}}} 

At the same time we also populate a structure called bSpace which stores the baseline 

values which are directly computed by using term frequency as explained above 

 

Once the space is ready, now we need to calculate the shifts between vectors of the 

words in different time span. For determining semantic shift, we use cosine similarity. 

Cosine similarity indicates how similar two vectors are. Hence we use 1 - (cosine 

similarity) as a measure of semantic shift.  

 

Thus we loop over the entire Semantic space called stSpace, and to determine the 

semantic shift for a word between different time spans. Once this is done, the entire 

results is stored in a resultant space called rSpace of the format Hashmap{Interesting 

word, HashMap{Location, HashMap{Timespan, Semantic Shift}}}. Finally using the result 

rSpace, we determine the standard deviation for each timespan.  



Results and Evaluation: 

 

In this section, we present a detailed set of results and their analysis. Also numerous 

variations of the results can be observed.  

Default window size :- 4, Default vector size: 10,000, Sparse :- 4-6 

 

 Results of the algorithm when applied on dataset "Satyam" with a timespan of 6 months 

with  Location : Bangalore. 

 

Timespan /  
Interesting Word  Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 

Mahindra 0 0 0.7284 0.4515 0 0 0 

India 0.5342 0.3367 0.4771 0.4593 0 0 0.6426 

Fraud 0 0 0.4457 0.3457 0 0 0 

Satyam 0.5065 0.4978 0.5765 0.3446 0 0 0.8298 

Standard Deviation 0.4632 0.4128 0.6582 0.5154 0 0 0.66 

 

 

a) Here the entire span of the time ranges from Dec 2007 to Dec 2010 with a steps 

of 6 months. The table presents the semantic shifts that every interesting word 

undergoes over every time span. 

b) A value of 0 for semantic shift indicates the term does not occur in the timespan. 

Whereas the value of 1 indicates that there is a complete change in the 

semantics of the word. We observe that, as compared to the shifts determined 

from the baseline, these values are quite high and more accurate. This is 

because, baseline computation takes into consideration only the term frequency, 

while the implemented algorithm not only considers the frequency but also the 

neighboring words to incorporate the context of each word. 

c) Standard deviation is used as a threshold factor to determine which shifts are 

significant and which shifts are not. The values in bold indicate the shifts that are 

greater than standard deviation for each time span. 

d) Lets us consider each Bold value  and hence conclude on the effectiveness of 

the method for event detection -  

1) Mahindra took over Satyam on 14th April 2009. This lies in the time span of 6 

months starting Dec 2008. Till then Mahindra was never associated with Satyam. 

Hence the values are 0 for previous spans. And then there is news about 

Mahindra take over Satyam in every newspaper. Hence the sudden semantic 

shift. Thus using the time span we could track back the reason for semantic shift. 



 

2)Satyam fraud case by Ramalinga Raju came out in Jan 2008. Hence as you can 

see the result for fraud first shows a value in range Dec 2008 span of 6 months. 

3) Before Dec 2008, we cannot find words other than Satyam to occur with high 

semantic shift. This was because during this time, Satyam was in news for 

different reasons ranging from the their quarterly results to Satyam being 

announced the 2008 winner of the coveted Golden Peacock Award for Corporate 

Governance under Risk Management and Compliance Issues. 

 

 

 
 

 

The above graph represents the same semantic shifts shown in the table. Thus from the 

analysis of the results we see that, we can effectively detect events by running Random 

Indexing. 

 

 Results of the algorithm when applied on dataset "Satyam" with a timespan of 6 months 

with  Location : Mumbai 

 

Timespan\  
Interesting Words Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 

mahindra 0 0 0.2304 0.1669 0 0.1344 0.326 

india 0.3923 0.3267 0.3212 0.3189 0.5968 0.3789 0.7155 

fraud 0 0.7649 0.3594 0.2444 0 0.3734 0 

satyam 0.8261 0.5613 0.2006 0.1511 0.315 0 0.5656 

Standard Deviation 0.6118 0.6061 0.3497 0.3047 0.4228 0.3518 0.6118 
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The above results are from a new location Mumbai, but for the same time span. We see 

a considerable change in the results and the pattern. This is mainly because, Satyam has 

numerous offices in Bangalore, plus Bangalore is the IT Hub (Silicon Valley) of India. 

Whereas Mumbai is the financial center and hence the incident lost its impact with time 

and you can see that the word India has the most semantic shift in most timespans. 

  

 
 

The above graph clearly shows a different trend over the previous graph for location of 

Bangalore. 

 

 Results for algorithm applied on dataset of "Satyam" with a timespan of 1 year and 

location of Bangalore 

 

Timespan\ 
Interesting Word 2007 2008 2009 2010 

mahindra 0 0.4591 0.101 0 

india 0.4451 0.3456 0.2155 0.6519 

fraud 0 0.4312 0.2533 0 

satyam 0.3956 0.1321 0.1873 0.6635 

Standard Deviation 0.3746 0.4127 0.2019 0.5853 

 

 

From the above table, we clearly see that it is difficult to detect events, if the timespan 

is large. This is because events generally occur over a short span of few months and 

then disappear. Thus shorter the time span, better is the accuracy of semantic shift 

calculation and also event prediction. 
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 Result on Algorithm applied on dataset of "Congress" over a period of 1 day each in a 

week with location of Washington.  

 

Timespan/ 
InterestingWord Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

washington 0.5943 0.3449 0.8139 0.8035 0.7963 0.8025 0.488 

federal 0.3716 0 0 0.6947 0.6169 0.4787 0.2244 

congress 0.265 0.6131 0.6007 0.464 0.3492 0.2912 0.2399 

republican 0.3328 0.6841 0 0 0.4721 0.5049 0.365 

companies 0.3894 0 0 0 0.4476 0.2965 0.4486 

obama 0.1659 0.4718 0.8404 0.6749 0.3655 0.3803 0.1803 

Standard Dev 0.4842 0.6233 0.7661 0.7592 0.6636 0.6328 0.4529 

   

 The above table represents semantic shifts calculated over a period of one week with 

shifts of one day each. As this is too short duration to predict any strong event we observe the 

entire shifts to be scattered.  

 

 

 

Thus we can conclude that when the algorithm is utilized for detecting events over a short span 

of time, if the corpus is not heavily oriented towards the event, the algorithm might not 

perform well. But in other case, it might surely give a correct result. Thus the algorithm can be 

used for live detection of events as it allows incremental sampling as mentioned before. 
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 Results for same data set as above of "Congress" for location washington, but with a 

changed window size of 100 

 

Timespan/ 
Interesting Word Sun Mon Tues Wed Thurs Fri Sat 

washington 0.4940 0.3482 0.7499 0.7604 0.7257 0.7441 0.3977 

federal 0.4056 0.0000 0.0000 0.7373 0.6702 0.5425 0.2698 

congress 0.2684 0.5926 0.5841 0.4683 0.3553 0.2931 0.2350 

republican 0.3115 0.6941 0.0000 0.0000 0.4351 0.4881 0.3320 

companies 0.4317 0 0 0 0.5018 0.3296 0.4813 

obama 0.1387 0.4202 0.8021 0.6399 0.3277 0.3430 0.1539 

 

 The above table indicates that semantic shift values do not show major change on 

 changing the window size but it does show smaller shift values. Thus we can conclude, 

 that we could increase the window size, if the event has not been very popular. This 

 would help consider more neighbouring terms and hence may show better results.  

 Results for same data set as above of "Congress" for location washington, but with a 

changed value of sparseness from 6-4 to 950-1000 

 

Timespan/ 
Interesting word Sun Mon Tues Wed Thurs Fri Sat 

washington 0.5293 0.3386 0.7692 0.7747 0.7463 0.7372 0.4259 

federal 0.3544 0 0 0.6735 0.6141 0.4722 0.2347 

congress 0.2836 0.6141 0.6186 0.4984 0.3950 0.3258 0.2509 

republican 0.3300 0.6891 0 0 0.4506 0.5024 0.3527 

companies 0.4185 0 0 0 0.4881 0.3140 0.4615 

obama 0.1336 0.4203 0.7947 0.6225 0.3098 0.3226 0.1484 

 

 The above table indicates that decreasing the sparseness of the index vector does no 
 result a huge change in the semantic shifts computed. However it does reduce the 
 orthogonality of vectors. This can reduce the accuracy of the algorithm as the vectors 
 need to be orthogonal. Thus the index vectors should be as sparse as possible. 
 
 
 
 
 
 



Bibliography 
1. Curran, James Gorman and James R. Random Indexing using Statistical Weight Functions. University 

of Sydney. s.l. : Conference on Empirical Methods in Natural Language Processing, 2006. 

2. Standard Deviation. Wikipedia. [Online] http://en.wikipedia.org/wiki/Standard_deviation. 

3. Stevens, David Jurgens and Keith. Event Detection in Blogs using Temporal Random Indexing. 

University of California, Los Angeles. s.l. : Association for Computational Linguistics, 2009. 

4. tf-idf. Wikipedia. [Online] http://en.wikipedia.org/wiki/Tf%E2%80%93idf. 

5. reuters. [Online] http://reuters.com. 

6. jsoup : Java HTML Parser. [Online] http://jsoup.org/. 

7. epoch convertor. [Online] http://www.epochconverter.com/. 

 


