
‑

Abstract - One of the key aspects of a file system is to have an
authorized access mechanism that only allows valid users to
access the files. Encryption - Decryption techniques are widely
used to improve these authentication checks. One such file system
is eCryptfs. eCryptfs (the Enterprise Cryptographic File system)
is a POSIX-compliant encrypted file system that provides
advanced key management and policy features but leaves ACL
support out. ACL support is extremely handy in file systems as it
allows you to extend access controls to files and directories
beyond the simple user/group/other ownership. In this report, we
will describe an approach to implement ACL support for
eCryptfs file system.

Index Terms - eCryptfs, ACL, File Systems, Name Hiding,
encryption, decryption, Linux, Access Control Lists

I. INTRODUCTION

THE file system eCryptfs aims at providing advanced

security mechanism for file systems using existing
cryptographic technologies. It provides several policy features
but does not provide Access Control List (ACL) support.
Specifically, once ecryptfs has authenticated a key in the
kernel's own keyring, then that key can be used by any user to
decrypt files. Moreover, it encrypts only file data and not file
names thus, leaving relevant information about the file openly
available to all users. In this report, we discuss an approach to
enhance the authentication and authorization techniques of
eCryptfs so as to further restrict the access by implementing
ACL support for the file system. We also incorporate the
feature of File Name Hiding which restricts unauthorized
users from viewing file names and other relevant information
that they are not allowed to.

The rest of the report is organized as follows. Section II
gives a background of eCryptfs and Access Control Lists.
Section III gives an overview of the design we use to
implement the ACL support mechanism for eCryptfs. The
implementation of our approach is described in Section IV,
followed by the evaluation in Section V. Concluding remarks
appear in Section VI. Finally, we discuss the future work
possibilites in Section VII.

II. BACKGROUND

Encryption is one of the most popular and reliable way to
protect your data from unauthorized access. eCryptfs is one
such POSIX-compliant enterprise-class stacked cryptographic
filesystem for Linux. It is implemented through the FiST
framework (3) for generating stacked filesystems. eCryptfs
extends Cryptfs to provide advanced key management and
policy features. It stores cryptographic metadata in the header
of each file written, so that encrypted files can be copied
between hosts; the file will be decryptable with the proper key,
and there is no need to keep track of any additional

information aside from what is already in the encrypted file
itself (4).

An access control list (ACL), with respect to a computer file
system, is a list of permissions attached to an object. An ACL
specifies which users or system processes are granted access
to objects, as well as what operations are allowed on given
objects. Each entry in a typical ACL specifies a subject and an
operation.

A Filesystem ACL is a data structure (usually a table)
containing entries that specify individual user or group rights
to specific system objects such as programs, processes, or
files. These entries are known as access control lists (ACLs) in
the operating systems terminplogy. Each accessible object
contains an identifier to its ACL.

The privileges or permissions determine specific access
rights, such as whether a user can read from, write to, or
execute an object. In some implementations an ACL can
control whether or not a user, or group of users, may alter the
ACL on an object (5).

III. DESIGN

1. Design Structure

As discussed above, the existing eCryptfs provides
authentication and authorization techniques using encryption/
decryption.

Figure 1 shows the existing eCryptfs arrangement. The User
program residing in the User Land requests access to a file that
is stored in the lower file system. The request is transferred via
VFS to eCryptfs which then handles this request by verifying
the authenticity of the user in the Basic Permission Check
section. The user's credentials (password used to mount to
eCryptfs) are verified with that of the file requested. Once
verified, eCryptfs gets the file from the lower file system,
decrypts the file and allows the user full access on that file. In
other words, any user (whether he is the owner or not) can get
full access to a file if he mounts the file system with the right
key.

Aneesh Sood, Ankush Gulati, and Ravneet Singh Dhaliwal

!

Figure 1: eCryptfs Layout

In Figure 2, we present an extension to the existing design
by adding another layer of permission checks, namely
Extended ACL Support. The main idea behind the extension is
adding a new layer of permission checks that provides two
new security features:

Support for Access Control Lists (ACLs:) each of which can
be a combination of any of the following:

!
Figure 2: Extended eCryptfs Layout

UID, primary GID, PID or process name, SID (Session
ID), or time-of-day.

File Name Hiding:

Hiding file names from the users that do not have
permission. Unauthorized users do not have access the
file; so it makes sense that they should not be able to
know about the existence of the file as well. Thus,
commands like "ls" do not display the results for files
that the current user is not authorized to access.

2. Operations

Setting Access Control for a new file

Once the user mounts the file system with the right key*,
he can set Access Controls for a file (if not already set) by
using a simple user program. The user can set any
combination of individual fields (UID, primary GID, PID
or process name, SID (Session ID), or time-of-day) that
he wants to in one Access Control.

Add new Access Controls for an existing file

 Once the user mounts the file system with the right key
and he further gets validated by the Extended ACL
Permission Check Section, he can then add new Access
Control for the file using the same user program. The new
Access Control can be a combination of any atomic
access control (e.g UID, primary GID, PID or process
name, SID , or time-of-day) as in the above case.

3. Rules

Individual fields (UID, GID etc.) in a given ACL are a
logical conjunction and ACL themselves are a disjunction.
So, if you match any of the ACL, you allow. But to match
an ACL, within it, all fields must match. For example, a
file foobar.txt that has two Access Controls A & B can be
accessed by the following only:
Let us assume,

 A : UID = x; GID = y; PID = z;
 B : UID = p; SID = q; PID = r; TOD = s;

The above Access Controls are interpreted as A || B
where,

A = (UID = x && GID = y && PID = z)
B = (UID = p && SID = q && PID = r && TOD = s)

In simpler words, any of the two Access Controls, A or B
which themselves are an 'AND'ed combination of
individual access control fields, is required to validate a
user.

IV. IMPLEMENTATION

1. Support for Access Control Lists

We are using the ioctl to set all the ACL entries that the
owner of the file wants to set for the file. We have defined
the following flags for each ACL attribute:

-U : uid

-P : pid
-G : gid
-S : sid
-e : end time
-s : start time

The last two parameters specify time range within which the
file can't be accessed by anybody. Both setting & checking
of the ACL attributes are done at the eCryptfs layer.

To set and check the ACL at eCryptfs layer we have
modified the following functions:

eCryptfs_unlocked_ioctl
eCryptfs_inode_permission

 Setting ACL attributes

eCryptfs_unlocked_ioctl receives all the ACL attributes that
the user wants to set for a particular file using 'acl_set'
command.

User can set only one ACL at one time. We are storing the
ACL's attributes and their value in posix_acl_structure. And
we will cache this posix_acl_structure in inode by using the
set_cached_acl function.

We then store these ACL using eCryptfs_setxattr function as
the ACLs are stored at the same block along with the other
extended attributes. So to distinguish the ACLs that we have
set from other extended attributes , we are storing each ACL
by its unique name. And the unique name that we are setting
for each ACL is obtained by concatenating the string
"user.ACL" and along with the time at the which that ACL
was set by the user. We are using the function
do_gettimeofday to obtained the time stamp. This function
gives the time in seconds elapsed from 1970. So this
function will give the unique timestamp which we will
append with the "user.ACL" string . And this concatenating
string will give a unique name for each ACL. We are giving
these unique name to each ACL so that when we will fetch
the attributes from the disk then along with our ACLs, the
other attributes like the extended attributes will also be
fetched. So at the the time of checking, we will only
compare the entries of the those ACLs whose names start
with "user.ACL".

In a nut shell, the following three steps describe the entire
for storing the ACL in cache and in the disk:

1. We are first caching the ACL in the inode using the
set_cached_acl.

1.2 We then give a unique name to each ACL, a unique
name is given by the combination of string "user.ACL"
+ the time given by do_gettimeof day() function.

1.3 Store the ACL's using the eCryptfs_setxattr function.

Checking ACL attributes

Now to check the ACL we will first probe the cache to get
the ACL. We get the cached acl using the function

get_cached_acl. If the ACL is there in the cache, we will get
it by function get_cached_acl which will return the acl if
present in the cache and if acl is not cached then this
function will return ACL_NOT_CACHED.

A function permission_acl() has been defined that will
check the process attributes (like uid , gid , sid etc that the
owner has set on the file) with each stored ACL for that file.
And if all the attributes of any ACL matched with the
current process attributes then that process is allowed to
access that file. In case any ACL doesn't match, then we
send the -EACCES error suggesting that the user is denied
to access the file. This is done if the ACL is cached but if
the ACL is not cached then we first call listxattr function
that will give the name of all ACL attributes in the buffer
with each name terminated with a null character. We then
parse this buffer for each name of the ACL and fetch this
ACL using function getxattr() function from the disk.

Once the ACL is fetched, we check the ACL attributes with
the current process attributes using the function
permission_grant() as described above.

In the permission grant function we are checking the
attributes of each ACL using the current pointer that points
to the current process. We match the stored ACL attribute
with the current process attributes.

2. File Name Hiding

As desribed above, only authenticated users are allowed to
access files. The aim here is to restrict the visibility of files
from unauthenticated users. This is achieved by modifying
the functionality of ecryptfs_readdir() function. We
observed that everytime an 'ls' command is issued from user
space, ecryptfs_readdir performs a read on the current
directory. The ecryptfs_readdir function in turn calls
ecryptfs_filldir to fill the contents (each file) of the
directory into the results. When ecryptfs_filldir is called, it
fetches the result from the lower filldir function. We
intercept this call to the lower filldir and perform an ACL
permission check on the file this function is called for. If the
user passes the permission check, we allow filldir to return
this result else it is blocked. Hence, only the files he is
allowed to access are visible to the user [6].

The pseudo code of this functionality looks like this:

 if this_file PASSES ACL permission check
 {
 Call parent_directory->filldir()
 }
 else
 {
 Skip filldir
 }

3. User (Utility) Program
We have provided a user program that the user can run to
set the ACL Attributes for a particular file in the following
manner:

./acl_set -U 20 -P 32 -G 12 -S 10 -s 3 -e 5 -f file_name -D
DEFAULT

where,
-U specifies the attribute type UID
20 is the value for the UID

 -P specifies PID,
 -G specifies GID,
 -S specifies SID,
 -s & -e specify the time range,

-f 'file_name' specifies the name of the file for which we
want to set the ACLs for

-D specifies the whether the file owner wants to specify
the TYPE: DEFAULT or ACCESS TYPE for the ACLs.

V. TESTING & EVALUATION

1. Stress Test:
• Overview:

 A file was created by root. Different users were then
concurrently logged on to the system. Each user
was given permission to access the file.

• Objective:
To test the robustness of the ACL permission checks.
During a permission check of a single user, a
significant number of memory allocations(Setting /
Getting Cached ACLs) takes place. Running multiple
users at the same time would increase the complexity
and would be a good measure of the scalability of our
code.

• Result: Passed.

2. Mixed Attributes:
• Overview:

User A has certain attributes (UID: X , GID: Y, PID: Z)
different from user B (UID: A , GID: B, PID: C). In a
situation where ACLs are set as a mixture of attributes
of both User A and B, none of them should be able to
access the file.

• Objective:
To verify the semantics of our ACL permission
checking. Individual fields (UID, GID etc.) in a given
ACL (for e.g. ACL1 = {UID: X , GID: B, PID: Z} and
ACL2 = {UID: A, GID: Y, PID: C}) are logically
ANDed (conjunction) and ACL themselves (ACL1 and
ACL2) are logically ORed (disjunction).

• Result: Passed.

3. Name Hiding:
• Overview:

A particular user should be able to only see the files
he/she has access to. Consider a simple statement like
[ls]. The user would only be displayed the files for
which he/she is the owner or has been granted access
through a certain ACL.

• Objective:
To test whether a user who logs in with his key gets to
see the files that he created with the same key or not.
All other files that were created with the other key or
that do not allow permission as per the ACLs should
not be visible.

• Result: Passed

4. Unit Testing:
Independent tests were run for both ACL Permission Check
and File Name Hiding:

ACL Permission Check
• Overview:

Before integration, the individual functionality of ACL
Permission Check should run fine that is, the extended
ACL Support should run as expected independent of
the File Name Hiding feature.

• Objective:
To test the functionality without the File Name hiding
feature. The extended ACLs should be supported just
like described in the above sections i.e. Access Control
Lists verify a user's authentication though the files
created using other keys are still valid.

• Result: Passed

File Name Hiding
• Overview:

Before integration, the File Name Hiding feature
should work independent of the ACL support
mechanism without any issues.

• Objective:
To test File Name hiding feature without ACL support
where in the regular eCryptfs functionality is working
and the user that has logged in with Key A should not
be able to view the file names of files created by Key
B.

• Result: Passed

VI. CONCLUSION

We have extended the existing security mechanism of eCryptfs
from just a passkey validation system to a per file Access
Control List support. We also added another important
security feature of File Name Hiding. The entire project has
been implemented in the existing eCryptfs file system and no
other file systems neither lower (EXT3) nor upper (VFS) were
modified thus developing a new version of the existing
stackable file system which can be used on user's discretion.
We have performed extensive tests (both customized and
generic) on the new file system and it passed all of them
cleanly.

VII. FUTURE WORK

We have implemented a simple ACL support to the existing
eCryptpfs file system. The project can be further extended to
enforce binary checksums that is, only binaries which have a
matched (secure) checksum are allowed to execute [7].

REFERENCES
1. Naveen Kumar , Jonathan Misurda , Bruce R. Childers ,

Mary Lou Soffa, "FIST: A Framework for Instrumentation
i n S o f t w a r e D y n a m i c Tr a n s l a t o r s " , h t t p : / /
c i t e s e e r x . i s t . p s u . e d u / v i e w d o c / s u m m a r y ?
doi=10.1.1.3.6711

2. "Linux man pages", http://linux.die.net/man/7/ecryptfs
3. "Access control list", http://en.wikipedia.org/wiki/

Access_control_list
4. Andreas Moog, "eCryptfs - Enterprise Cryptographic

Filesystem", http://ecryptfs.sourceforge.net/ecryptfs-
faq.html

5. Vincent Danen, "Learn to use extended filesystem ACLs",
h t t p : / / a r t i c l e s . t e c h r e p u b l i c . c o m . c o m /
5100-10878_11-6091748.html

6. Erez Zadok, "Writing Stackable Filesystems", http://
www.ee.ryerson.ca/~courses/coe518/LinuxJournal/
elj2003-109-stackablefilesystems.pdf

7. CSE 506 Fall 2010 Courseware & Assignments, Stony
Brook University, http://www.cs.sunysb.edu/~ezk/cse506-
f10

