

System for Automatic Development of a Visual Attribute Vocabulary

Ankush Gulati

Stony Brook University, NY

angulati@cs.stonybrook.edu

Prasad Prabhu

Stony Brook University, NY

prprabhu@cs.stonybrook.edu

 (In fulfillment of CSE 523 Master’s Advanced Project)

ABSTRACT

The goal of this project is to design an automated system that develops a dictionary of image attributes

based on human responses in addition to low level image information. The current implementation

automatically harvests images of objects or scenes specified by textual descriptions from the web and

further acquires detailed attributes describing these objects and scenes using Amazon's Mechanical Turk

to verify image contents. The project report will progress by discussing the goal of project, motivation,

exploring certain challenges, why do we need automation, current implementation, entire life cycle of

obtaining image tags and future work.

KEYWORDS
images, tags, mechanical turk, crawler, attributes, human response.

INTRODUCTION

The overview of the image tagging project -

Image Tagging

Most machines are able to process textual queries easily but searching images based on content is a

non-trivial task. Thus, a mechanism to translate image to text is needed for efficient querying on images.

The description of image could be anything, a long prose or might contain keyword that describe spatial,

temporal or emotional aspects. Popular applications that take advantage of such image tagging are Flickr,

Google ImageLabeler, Adobe Photoshop Album, etc.

Automated Image Tagging

Automatic image tagging seeks to assign meaningful words to images (e.g book, animal, moon, etc) and

describe contents found in those images without manual intervention. The idea works on finding template

patterns on training set and associate it with set of words or tags. In order to obtain such templates,

cataloging of relevant images along with human responses are necessary. If patterns are observed in

human responses for images, it could alleviate some challenges in image tagging. The aim of project is to

make entire process automated with minimum efforts. This may encourage further research in image

tagging and reduces set up time.

alleviate the problem in resolving such ambiguities. Tags such as golf, flowers would definitely help to

identify such two disparate images .

Automated techniques depends primarily on correctness in human responses. However, such responses

are bound to human errors and inconsistencies. Image tags are susceptible to one's own interpretation and

common sense. Certain images consist of lot of information and by no means can be described

completely by few set of words. Certain tags are irrelevant to the image and sometimes tag that are too

detailed or too specific are of less use. The major issue is the order of tags. Given a set of tags, it is non-

trivial to conclude as to which tag describes which part of image.

Crowdsourcing

We are creating a catalogue of relevant images and their respective tags. Specialized crawler is built to

harvest images from web that we desire. Later, images are tagged using third-party programming

techniques such as Amazon Mechanical Turk, which allows us to submit image tagging jobs called as

HIT(Human Intelligence Task) to online unknown workers. A HIT is a simple non-intelligible task that

expects inputs from unknown human worker. We as a requester, create image tagging templates that

displays set of images and place holders(3 in this case) for providing image tags using mturk tools. The

entire process from automatic HIT creation as well as harvesting images from web is described in the

further sections.

IMPLEMENTATION

Initial set-up

The initial part of project consists of programming python scripts that is easy for set-up and that requires

minimum efforts in maintaining results. The entire arrangement needs a back-end server (PHP v5.0+) that

manages the external source question and a database(MySQL) to maintain results and statistics. We chose

database over file system to leverage efficient and simpler querying.

Automated H.I.T Creation

In order to use the script, the requestor needs to maintain the list of images urls in a directory relative to

its template. The template file can be stored anywhere in public_html directory. Following command

needs to be executed to create a HIT.

python create_hit.py [-u base_url] [-t template_name] [-n hit_name]
 [-l image_source_list] {OPTIONAL[-o output_dir_name] }

E.g.:

python create_hit.py -u recognition.cs.stonybrook.edu/~ykou/

 -t template_dir/tag.php

 -n TagMeHitFolder

 -l job_directory/image_source_list.txt

 -o TagMeHitOutput

The create_hit.py script will generate a HIT TagMeHitFolder that contains all the Amazon command line

tools to run the HIT(run.sh), retrieve/approve (getResults.sh/ approveAndDeleteResults.sh) results.

Tag.php is the template file that serves as the external URL for the mechanical turk. The script will copy

image_source_list.txt to template_dir and assign necessary file permissions. Template dependencies such

as stylesheets, JavaScript source files, etc has to be manually managed by the requestor. Amazon

provides sandbox to test the template. The argument variable -sandbox of the Amazon command line tool

lets us test our template over mturk sandbox.

e.g. run.sh -sandbox will run the template file over turk and provide us the link that runs this url.

On retrieving results from Amazon, the requestor has the choice of approving or rejecting the answer and

accordingly the workers are paid. In image tagging case, answers will be rejected if it contains non-

dictionary words, same tags for images, etc.

HIT Template

A sample image tagging template would like as follows -

On successful submission of tags, workers will see such message.

Results

A subset of columns of results obtained from Amazon are -

Hitid Assignmentid Workerid Answer.results

XXX YYY ZZZ
job/image01.jpg:tag1;tag2;tag3|job/image02.jpg:tag1;tag2;tag3|

The results are for each of the images are '|' delimited and tags are ';' delimited.

Assignmentid are given for each worker assignments uniquely by Amazon that attempts to tag images.

HITid is same for all assignments.

ENTIRE PROCESS

A template file, (such as tag.php) should be scripted in PHP that will include images obtained from

specialized crawler and accept 3 tags per image. The template should not allow any special character or

space in the tags as it may be elusive to separate correct answers. On submission of answers, there should

be correct set up of MySQL database such as database name, username, table name, table columns. The

submit file combines all the images and their respective tags to Amazon turk and does a similar database

insert at the client's end. The advantage - the client has the entire information about his mturk activities at

a centralized location and is available for reuse as well as manipulation.

Initially, create_hit.py will generate turk tools and does necessary permission modifications on template

folder, image source list, submit.php files. If more time (default 60mins) and reward is to be allotted for

completion of HIT assignment, requestor has to modify assignmentduration and reward variables in

.properties files. For adding more HITs, requestor has to add more lines to .input file in HIT folder. The

line column will point to the corresponding line number in the image source list. Every line in image

source list has a list of image urls stored horizontally and space delimited. Also, every line in the HIT

point to different HITs. Every line should contain at least one image but has no upper limit on number of

images per HIT.

On running the tool, template url is uploaded over Amazon, and returns back the HIT url. The HIT is now

available to the worker for tagging. At the end of time frame(initialized in .properties) , results are

available to the requestor. The requestor now has the choice to either approve or reject the workers

depending upon the relevance of the results. If the requestor does not approve/reject within time period,

Amazon by default approves the result.

Specialized Crawler

To build a large repository of images of scenes and objects, we need an automated system that searches

the desired websites and extracts the relevant images for us. We have designed a website specific crawler

that takes the input query & the URL and fetches all the images related to the query from the website by

parsing the DOM structure of the HTML of each page.

We have currently been able to crawl www.like.com using the crawler. We plan to extend the crawler in

the coming semester for other websites as well. The current implementation of the web crawler is in

JAVA and uses an open source library JSoup for converting the DOM Structure of the source of crawled

html page to a clean XML that can then be read using simple JAVA routines. It takes generic parameters

like search query, URL (like.com) & the result directory path and writes the relevant images from the

search result along with their descriptions (provided on like.com) to the desired directory.

FUTURE WORK

Specialized Crawler

The crawler is currently in the implementation phase. We plan to work more on it next semester to make

it more robust and if possible generic (free from DOM structure restrictions of a webpage) so that any

regular user can use it for crawling any image site.

Create the training data set

Once the crawler implementation is complete, we plan to crawl multiple image websites to populate our

database and get them tagged from workers on Mechanical Turk using the already setup MTurk

Automation Tool.

Training the Dataset using computer vision routines

Design computer vision algorithm to associate human annotations with images and form template patterns

while learning from those annotations.

Test and analysis

Generate testing datasets from the web and analyze the efficiency of these results.

BIBLIOGRAPHY

1. Histogram Refinement for Content-Based Image Retrieval. Greg Pass, Ramin Zabih.

2. Amazon Mechanical Turk Developer Command Line.

http://docs.amazonwebservices.com/AWSMechTurk/latest/AWSMturkCLT/.

3. Online Source Code and tutorial. http://recognition.cs.stonybrook.edu/~ykou/website/.

4. Flickr. Image Sources. http://www.flickr.com

6. JSoup: Java HTML Parser http://jsoup.org/apidocs/

